ترغب بنشر مسار تعليمي؟ اضغط هنا

Controlling spontaneous emission via electronic correlations in transparent metals

139   0   0.0 ( 0 )
 نشر من قبل Marcello Silva Neto Dr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the spontaneous emission of agglomerates of two-level quantum emitters embedded in a correlated transparent metal. The characteristic emission energy corresponds to the splitting between ground and excited states of a neutral, nonmagnetic molecular impurity (F color center), while correlations are due to the existence of narrow bands in the metal. This is the case of transition metal oxides with an ABO3 Perovskite structure, such as SrVO3 and CaVO3, where oxygen vacancies are responsible for the emission of visible light, while the correlated metallic nature arises from the partial filling of a band with mostly d-orbital character. For these systems we put forward an interdisciplinary, tunable mechanism to control light emission governed by electronic correlations. We show that not only there exists a critical value for the correlation strength above which the metal becomes transparent in the visible, but also that strong correlations can lead to a remarkable enhancement of the light-matter coupling. By unveiling the role of electronic correlations in spontaneous emission, our findings set the basis for the design of controllable, solid-state, single-photon sources in correlated transparent metals.



قيم البحث

اقرأ أيضاً

To clarify the nature of correlations in Hund metals and its relationship with Mott physics we analyze the electronic correlations in multiorbital systems as a function of intraorbital interaction U, Hunds coupling JH and electronic filling n. We sho w that the main process behind the enhancement of correlations in Hund metals is the suppression of the double-occupancy of a given orbital, as it also happens in the Mott-insulator at half-filling. However, contrary to what happens in Mott correlated states the reduction of the quasiparticle weight Z with JH can happen on spite of increasing charge fluctuations. Therefore, in Hund metals the quasiparticle weight and the mass enhancement are not good measurements of the charge localization. Using simple energetic arguments we explain why the spin polarization induced by Hunds coupling produces orbital decoupling. We also discuss how the behavior at moderate interactions, with correlations controlled by the atomic spin polarization, changes at large $U$ and $J_H$ due to the proximity to a Mott insulating state.
The validity of the structure-property relationships governing the deformation behavior of bcc metals was brought into question with recent {it ab initio} density functional studies of isolated screw dislocations in Mo and Ta. These existing relation ships were semiclassical in nature, having grown from atomistic investigations of the deformation properties of the groups V and VI transition metals. We find that the correct form for these structure-property relationships is fully quantum mechanical, involving the coupling of electronic states with the strain field at the core of long $a/2<111>$ screw dislocations.
248 - E. Maniv , M. Ben Shalom , A. Ron 2015
The interface between the two band insulators SrTiO3 and LaAlO3 unexpectedly has the properties of a two dimensional electron gas. It is even superconducting with a transition temperature, Tc, that can be tuned using gate bias Vg, which controls the number of electrons added or removed from the interface. The gate bias - temperature (Vg, T) phase diagram is characterized by a dome-shaped region where superconductivity occurs, i.e., Tc has a non-monotonic dependence on Vg, similar to many unconventional superconductors. In this communication the frequency of the quantum resistance-oscillations versus inverse magnetic field is reported for various Vg. This frequency follows the same nonmonotonic behavior as Tc; similar trend is seen in the low field limit of the Hall coefficient. We theoretically show that electronic correlations result in a non-monotonic population of the mobile band, which can account for the experimental behavior of the normal transport properties and the superconducting dome.
We study the interaction effect in a three dimensional Dirac semimetal and find that two competing orders, charge-density-wave orders and nematic orders, can be induced to gap the Dirac points. Applying a magnetic field can further induce an instabil ity towards forming these ordered phases. The charge density wave phase is similar as that of a Weyl semimetal while the nematic phase is unique for Dirac semimetals. Gapless zero modes are found in the vortex core formed by nematic order parameters, indicating the topological nature of nematic phases. The nematic phase can be observed experimentally using scanning tunnelling microscopy.
Transition metal dichalcogenides (TMDC) are a rich family of two-dimensional materials displaying a multitude of different quantum ground states. In particular, d$^3$ TMDCs are paradigmatic materials hosting a variety of symmetry broken states, inclu ding charge density waves, superconductivity, and magnetism. Among this family, NbSe$_2$ is one of the best-studied superconducting materials down to the monolayer limit. Despite its superconducting nature, a variety of results point towards strong electronic repulsions in NbSe$_2$. Here, we control the strength of the interactions experimentally via quantum confinement effects and use low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS) to demonstrate that NbSe$_2$ is in strong proximity to a correlated insulating state. This reveals the coexistence of competing interactions in NbSe$_2$, creating a transition from a superconducting to an insulating quantum correlated state by confinement-controlled interactions. Our results demonstrate the dramatic role of interactions in NbSe$_2$, establishing NbSe$_2$ as a correlated superconductor with competing interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا