ﻻ يوجد ملخص باللغة العربية
We present a search for late-time rebrightening of radio emission from three supernovae (SNe) with associated gamma-ray bursts (GRBs). It has been previously proposed that the unusually energetic SNe associated with GRBs should enter the Sedov-Taylor phase decades after the stellar explosion, and this SN remnant emission will outshine the GRB radio afterglow and be detectable at significant distances. We place deep limits on the radio luminosity of GRB 980425/SN 1998bw, GRB 030329/SN 2003dh and GRB 060218/SN 2006aj, 10-18 years after explosion, with our deepest limit being $L_{ u}$ $< 4 times 10^{26}$ erg s$^{-1}$ Hz$^{-1}$ for GRB 980425/SN 1998bw. We put constraints on the density of the surrounding medium for various assumed values of the microphysical parameters related to the magnetic field and synchrotron-emitting electrons. For GRB 060218/SN 2006aj and GRB 980425/SN 1998bw, these density limits have implications for the density profile of the surrounding medium, while the non-detection of GRB 030329/SN 2003dh implies that its afterglow will not be detectable anymore at GHz frequencies.
GRB 080503, detected by Swift, belongs to the class of bursts whose prompt phase consists of an initial short spike followed by a longer soft tail. It did not show any transition to a regular afterglow at the end of the prompt emission but exhibited
Deriving physical parameters from gamma-ray burst afterglow observations remains a challenge, even now, 20 years after the discovery of afterglows. The main reason for the lack of progress is that the peak of the synchrotron emission is in the sub-mm
GRB200522A is a short duration gamma-ray burst (GRB) at redshift $z$=0.554 characterized by a bright infrared counterpart. A possible, although not unambiguous, interpretation of the observed emission is the onset of a luminous kilonova powered by a
We examine a sample of 21 gamma-ray burst (GRB) afterglow light curves at radio frequencies, and compare them to the X-ray and/or optical properties of the afterglows and to the predictions of the standard jet/fireball model. Our sample includes ever
We present results of a search for late-time radio emission and Fast Radio Bursts (FRBs) from a sample of type-I superluminous supernovae (SLSNe-I). We used the Karl G. Jansky Very Large Array to observe ten SLSN-I more than 5 years old at a frequenc