ترغب بنشر مسار تعليمي؟ اضغط هنا

Machine learning enables polymer cloud-point engineering via inverse design

58   0   0.0 ( 0 )
 نشر من قبل Jatin Kumar
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Inverse design is an outstanding challenge in disordered systems with multiple length scales such as polymers, particularly when designing polymers with desired phase behavior. We demonstrate high-accuracy tuning of poly(2-oxazoline) cloud point via machine learning. With a design space of four repeating units and a range of molecular masses, we achieve an accuracy of 4 {deg}C root mean squared error (RMSE) in a temperature range of 24-90 {deg}C, employing gradient boosting with decision trees. The RMSE is >3x better than linear and polynomial regression. We perform inverse design via particle-swarm optimization, predicting and synthesizing 17 polymers with constrained design at 4 target cloud points from 37 to 80 {deg}C. Our approach challenges the status quo in polymer design with a machine learning algorithm, that is capable of fast and systematic discovery of new polymers.



قيم البحث

اقرأ أيضاً

Machine learning (ML) and artificial intelligence (AI) have the remarkable ability to classify, recognize, and characterize complex patterns and trends in large data sets. Here, we adopt a subclass of machine learning methods viz., deep learnings and develop a general-purpose AI tool - dPOLY for analyzing molecular dynamics trajectory and predicting phases and phase transitions in polymers. An unsupervised deep neural network is used within this framework to map a molecular dynamics trajectory undergoing thermophysical treatment such as cooling, heating, drying, or compression to a lower dimension. A supervised deep neural network is subsequently developed based on the lower dimensional data to characterize the phases and phase transition. As a proof of concept, we employ this framework to study coil to globule transition of a model polymer system. We conduct coarse-grained molecular dynamics simulations to collect molecular dynamics trajectories of a single polymer chain over a wide range of temperatures and use dPOLY framework to predict polymer phases. The dPOLY framework accurately predicts the critical temperatures for the coil to globule transition for a wide range of polymer sizes. This method is generic and can be extended to capture various other phase transitions and dynamical crossovers in polymers and other soft materials.
In recent years, machine learning (ML) systems have been increasingly applied for performing creative tasks. Such creative ML approaches have seen wide use in the domains of visual art and music for applications such as image and music generation and style transfer. However, similar creative ML techniques have not been as widely adopted in the domain of game design despite the emergence of ML-based methods for generating game content. In this paper, we argue for leveraging and repurposing such creative techniques for designing content for games, referring to these as approaches for Game Design via Creative ML (GDCML). We highlight existing systems that enable GDCML and illustrate how creative ML can inform new systems via example applications and a proposed system.
Perovskite stability is of the core importance and difficulty in current research and application of perovskite solar cells. Nevertheless, over the past century, the formability and stability of perovskite still relied on simplified factor based on h uman knowledge, such as the commonly used tolerance factor t. Combining machine learning (ML) with first-principles density functional calculations, we proposed a strategy to firstly calculate the decomposition energies, considered to be closely related to thermodynamic stability, of 354 kinds halide perovskites, establish the machine learning relationship between decomposition energy and compositional ionic radius and investigate the stabilities of 14,190 halide double perovskites. The ML-predicted results enable us to rediscover a series of stable rare earth metal halide perovskites (up to ~1000 kinds), indicating the generalization of this model and further provide elemental and concentration suggestion for improving the stability of mixed perovskite.
101 - Zekun Ren , Juhwan Noh , Siyu Tian 2020
Deep learning has fostered many novel applications in materials informatics. However, the inverse design of inorganic crystals, $textit{i.e.}$ generating new crystal structure with targeted properties, remains a grand challenge. An important ingredie nt for such generative models is an invertible representation that accesses the full periodic table. This is challenging due to limited data availability and the complexity of 3D periodic crystal structures. In this paper, we present a generalized invertible representation that encodes the crystallographic information into the descriptors in both real space and reciprocal space. Combining with a generative variational autoencoder (VAE), a wide range of crystallographic structures and chemistries with desired properties can be inverse-designed. We show that our VAE model predicts novel crystal structures that do not exist in the training and test database (Materials Project) with targeted formation energies and band gaps. We validate those predicted crystals by first-principles calculations. Finally, to design solids with practical applications, we address the sparse label problem by building a semi-supervised VAE and demonstrate its successful prediction of unique thermoelectric materials
It is well-known that the degeneracy of two-phase microstructures with the same volume fraction and two-point correlation function $S_2(mathbf{r})$ is generally infinite. To elucidate the degeneracy problem explicitly, we examine Debye random media, which are entirely defined by a purely exponentially decaying two-point correlation function $S_2(r)$. In this work, we consider three different classes of Debye random media. First, we generate the most probable class using the Yeong-Torquato construction algorithm. A second class of Debye random media is obtained by demonstrating that the corresponding two-point correlation functions are effectively realized in the first three space dimensions by certain models of overlapping, polydisperse spheres. A third class is obtained by using the Yeong-Torquato algorithm to construct Debye random media that are constrained to have an unusual prescribed pore-size probability density function. We structurally discriminate these three classes of Debye random media from one another by ascertaining their other statistical descriptors, including the pore-size, surface correlation, chord-length probability density, and lineal-path functions. We also compare and contrast the percolation thresholds as well as the diffusion and fluid transport properties of these degenerate Debye random media. We find that these three classes of Debye random media are generally distinguished by the aforementioned descriptors and their microstructures are also visually distinct from one another. Our work further confirms the well-known fact that scattering information is insufficient to determine the effective physical properties of two-phase media. Additionally, our findings demonstrate the importance of the other two-point descriptors considered here in the design of materials with a spectrum of physical properties.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا