ترغب بنشر مسار تعليمي؟ اضغط هنا

Fiber-Optic quantum two-way time transfer with frequency entangled pulses

106   0   0.0 ( 0 )
 نشر من قبل Runai Quan
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High-precision time transfer is of fundamental interest in physics and metrology. Quantum time transfer technologies that use frequency-entangled pulses and their coincidence detection have been proposed, offering potential enhancements in precision and better guarantees of security. In this paper, we describe a fiber-optic two-way quantum time transfer experiment. Using quantum nonlocal dispersion cancellation, time transfer over a 20-km fiber link achieves a time deviation of 922 fs over 5 s and 45 fs over 40960 s. The time transfer accuracy as a function of fiber lengths from 15 m to 20 km is also investigated, and an uncertainty of 2.46 ps in standard deviation is observed. In comparison with its classical counterparts, the fiber-optic two-way quantum time transfer setup shows appreciable improvement, and further enhancements could be obtained by using new event timers with sub-picosecond precision and single-photon detectors with lower timing jitter for optimized coincidence detection. Combined with its security advantages, the femtosecond-scale two-way quantum time transfer is expected to have numerous applications in high-precision middle-haul synchronization systems.



قيم البحث

اقرأ أيضاً

The generation of ultrafast laser pulses and the reconstruction of their electric fields is essential for many applications in modern optics. Quantum optical fields can also be generated on ultrafast time scales, however, the tools and methods availa ble for strong laser pulses are not appropriate for measuring the properties of weak, possibly entangled pulses. Here, we demonstrate a method to reconstruct the joint-spectral amplitude of a two-photon energy-time entangled state from joint measurements of the frequencies and arrival times of the photons, and the correlations between them. Our reconstruction method is based on a modified Gerchberg-Saxton algorithm. Such techniques are essential to measure and control the shape of ultrafast entangled photon pulses.
We employed an electrically-driven polarization controller to implement anisotropic depolarizing quantum channels for the polarization state of single photons. The channels were characterized by means of ancilla-assisted quantum process tomography us ing polarization-entangled photons generated in the process of spontaneous parametric down-conversion. The demonstrated depolarization method offers good repeatability, low cost, and compatibility with fiber-optic setups. It does not perturb the modal structure of single photons, and therefore can be used to verify experimentally protocols for managing decoherence effects based on multiphoton interference.
412 - J. Nunn , L. Wright , C. Soller 2013
We introduce a novel time-frequency quantum key distribution (TFQKD) scheme based on photon pairs entangled in these two conjugate degrees of freedom. The scheme uses spectral detection and phase modulation to enable measurements in the temporal basi s by means of time-to-frequency conversion. This allows large-alphabet encoding to be implemented with realistic components. A general security analysis for TFQKD with binned measurements reveals a close connection with finite-dimensional QKD protocols and enables analysis of the effects of dark counts on the secure key size.
Entangled photon pairs have been promised to deliver a substantial quantum advantage for two-photon absorption spectroscopy. However, recent work has challenged the previously reported magnitude of quantum enhancement in two-photon absorption. Here, we present an experimental comparison of sum-frequency generation and molecular absorption, each driven by isolated photon pairs. We establish an upper bound on the enhancement for entangled-two-photon absorption in Rhodamine-6G, which lies well below previously reported values.
We performed a two-way remote optical phase comparison on optical fiber. Two optical frequency signals were launched in opposite directions in an optical fiber and their phases were simultaneously measured at the other end. In this technique, the fib er noise was passively cancelled, and we compared two optical frequencies at the ultimate 1E-21 stability level. The experiment was performed on a 47 km fiber that is part of the metropolitan network for Internet traffic. The technique relies on the synchronous measurement of the optical phases at the two ends of the link, that is made possible by the use of digital electronics. This scheme offers several advantages with respect to active noise cancellation, and can be upgraded to perform more complex tasks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا