ترغب بنشر مسار تعليمي؟ اضغط هنا

Tuning spin torque nano-oscillator nonlinearity using He+ irradiation

197   0   0.0 ( 0 )
 نشر من قبل Sheng Jiang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use He$^+$ irradiation to tune the nonlinearity, $mathcal{N}$, of all-perpendicular spin-torque nano-oscillators (STNOs) using the He$^+$ fluence-dependent perpendicular magnetic anisotropy (PMA) of the [Co/Ni] free layer. Employing fluences from 6 to 20$times10^{14}$~He$^{+}$/cm$^{2}$, we are able to tune $mathcal{N}$ in an in-plane field from strongly positive to moderately negative. As the STNO microwave signal properties are mainly governed by $mathcal{N}$, we can in this way directly control the threshold current, the current tunability of the frequency, and the STNO linewidth. In particular, we can dramatically improve the latter by more than two orders of magnitude. Our results are in good agreement with the theory for nonlinear auto-oscillators, confirm theoretical predictions of the role of nonlinearity, and demonstrate a straightforward path towards improving the microwave properties of STNOs.



قيم البحث

اقرأ أيضاً

Spin torque nano-oscillators (STNO) are nanoscale devices with wide band frequency tunability. Their multifunctional RF properties are well suited to define novel schemes for wireless communications that use basic protocols for data transmission such as amplitude, frequency and phase shift keying (ASK, FSK, PSK). In contrast to ASK and FSK, implementation of PSK is more challenging for STNOs because of their relatively high phase noise. Here we introduce a special PSK technique by combining their modulation and injection locking functionality. The concept is validated using magnetic tunnel junction based vortex STNOs for injection locking at 2f and f/2 showing phase shifts up to 2.1rad and data transmission rates up to 4Mbit/s. Quadrature phase shift keying and analog phase modulation are also implemented, where the latter is employed for voice transmission over a distance of 10 meters. This demonstrates that STNO phase noise and output power meet the requested performances for operation in existing communication schemes.
Arrays of spin-torque nano-oscillators are promising for broadband microwave signal detection and processing, as well as for neuromorphic computing. In many of these applications, the oscillators should be engineered to have equally-spaced frequencie s and equal sensitivity to microwave inputs. Here we design spin-torque nano-oscillator arrays with these rules and estimate their optimum size for a given sensitivity, as well as the frequency range that they cover. For this purpose, we explore analytically and numerically conditions to obtain vortex spin-torque nano-oscillators with equally-spaced gyrotropic oscillation frequencies and having all similar synchronization bandwidths to input microwave signals. We show that arrays of hundreds of oscillators covering ranges of several hundred MHz can be built taking into account nanofabrication constraints.
Spin-torque nano-oscillators can emulate neurons at the nanoscale. Recent works show that the non-linearity of their oscillation amplitude can be leveraged to achieve waveform classification for an input signal encoded in the amplitude of the input v oltage. Here we show that the frequency and the phase of the oscillator can also be used to recognize waveforms. For this purpose, we phase-lock the oscillator to the input waveform, which carries information in its modulated frequency. In this way we considerably decrease amplitude, phase and frequency noise. We show that this method allows classifying sine and square waveforms with an accuracy above 99% when decoding the output from the oscillator amplitude, phase or frequency. We find that recognition rates are directly related to the noise and non-linearity of each variable. These results prove that spin-torque nano-oscillators offer an interesting platform to implement different computing schemes leveraging their rich dynamical features.
A theoretical study of delayed feedback in a spin-torque nano-oscillator model is presented. The feedback acts as a modulation of the supercriticality, which results in changes in the oscillator frequency through a strong nonlinearity, amplitude modu lations, and a rich modulation sideband structure in the power spectrum at long delays. Modulation sidebands persist at finite temperatures but some of the complex structure is lost through the finite coherence time of the oscillations.
A numerical investigation is conducted for a single spin-torque oscillator under the non-linear region. A large angle precession triggers the generation of multiple modes without any feedbacked circuits and/or magnetic couplings with neighboring osci llators. Our simulations show that a single eigenmode of a given spin-torque oscillator can trigger up to six discrete modes as the sideband modes. These findings will offer the new functionality to the STO for developing the spintronic logic circuits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا