ﻻ يوجد ملخص باللغة العربية
Reconstructing continuous signals from a small number of discrete samples is a fundamental problem across science and engineering. In practice, we are often interested in signals with simple Fourier structure, such as bandlimited, multiband, and Fourier sparse signals. More broadly, any prior knowledge about a signals Fourier power spectrum can constrain its complexity. Intuitively, signals with more highly constrained Fourier structure require fewer samples to reconstruct. We formalize this intuition by showing that, roughly, a continuous signal from a given class can be approximately reconstructed using a number of samples proportional to the *statistical dimension* of the allowed power spectrum of that class. Further, in nearly all settings, this natural measure tightly characterizes the sample complexity of signal reconstruction. Surprisingly, we also show that, up to logarithmic factors, a universal non-uniform sampling strategy can achieve this optimal complexity for *any class of signals*. We present a simple and efficient algorithm for recovering a signal from the samples taken. For bandlimited and sparse signals, our method matches the state-of-the-art. At the same time, it gives the first computationally and sample efficient solution to a broad range of problems, including multiband signal reconstruction and kriging and Gaussian process regression tasks in one dimension. Our work is based on a novel connection between randomized linear algebra and signal reconstruction with constrained Fourier structure. We extend tools based on statistical leverage score sampling and column-based matrix reconstruction to the approximation of continuous linear operators that arise in signal reconstruction. We believe that these extensions are of independent interest and serve as a foundation for tackling a broad range of continuous time problems using randomized methods.
We show that Transformer encoder architectures can be sped up, with limited accuracy costs, by replacing the self-attention sublayers with simple linear transformations that mix input tokens. These linear mixers, along with standard nonlinearities in
We describe a simple algorithm for sampling $n$-qubit Clifford operators uniformly at random. The algorithm outputs the Clifford operators in the form of quantum circuits with at most $5n + 2n^2$ elementary gates and a maximum depth of $mathcal{O}(nl
To understand, predict, and control complex networked systems, a prerequisite is to reconstruct the network structure from observable data. Despite recent progress in network reconstruction, binary-state dynamics that are ubiquitous in nature, techno
In the subgraph counting problem, we are given a input graph $G(V, E)$ and a target graph $H$; the goal is to estimate the number of occurrences of $H$ in $G$. Our focus here is on designing sublinear-time algorithms for approximately counting occurr
Spatial Semantic Pointers (SSPs) have recently emerged as a powerful tool for representing and transforming continuous space, with numerous applications to cognitive modelling and deep learning. Fundamental to SSPs is the notion of similarity between