ﻻ يوجد ملخص باللغة العربية
Large-scale applications of energy density functional (EDF) methods depend on fast and reliable algorithms to solve the associated non-linear self-consistency problem. When dealing with large single-particle variational spaces, existing solvers can become very slow, and their performance dependent on manual fine-tuning of numerical parameters. In addition, convergence can sensitively depend on particularities of the EDFs parametrisation under consideration. Using the widely-used Skyrme EDF as an example, we investigate the impact of the parametrisation of the EDF, both in terms of the operator structures present and the size of coupling constants, on the convergence of numerical solvers. We focus on two aspects of the self-consistency cycle, which are the diagonalisation of a fixed single-particle Hamiltonian on one hand and the evolution of the mean-field densities and potentials on the other. Throughout the article we use a coordinate-space representation, for which the behaviour of algorithms can be straightforwardly analysed. We propose two algorithmic improvements that are easily implementable in existing solvers, heavy-ball dynamics and potential preconditioning. We demonstrate that these methods can be made virtually parameter-free, requiring no manual fine-tuning to achieve near-optimal performance except for isolated cases. The combination of both methods decreases substantially the CPU time required to obtain converged results. The improvements are illustrated for the MOCCa code that solves the self-consistent HFB problem in a 3d coordinate space representation for parametrisations of the standard Skyrme EDF at next-to-leading order in gradients and its extension to next-to-next-to-leading order.
The explicit density (rho) dependence in the coupling coefficients of the non-relativistic nuclear energy-density functional (EDF) encodes effects of three-nucleon forces and dynamical correlations. The necessity for a coupling coefficient in the for
We present a minimal nuclear energy density functional (NEDF) called SeaLL1 that has the smallest number of possible phenomenological parameters to date. SeaLL1 is defined by 7 significant phenomenological parameters, each related to a specific nucle
The density functional theory (DFT) is based on the existence and uniqueness of a universal functional $E[rho]$, which determines the dependence of the total energy on single-particle density distributions. However, DFT says nothing about the form of
We present the fundamental techniques and working equations of many-body Greens function theory for calculating ground state properties and the spectral strength. Greens function methods closely relate to other polynomial scaling approaches discussed
Background: Models based on using perturbative polarization corrections and mean-field blocking approximation give conflicting results for masses of odd nuclei. Purpose: Systematically investigate the polarization and mean-field models, implemented