ﻻ يوجد ملخص باللغة العربية
We formulate fractional difference equations of Riemann-Liouville and Caputo type in a functional analytical framework. Main results are existence of solutions on Hilbert space-valued weighted sequence spaces and a condition for stability of linear fractional difference equations. Using a functional calculus, we relate the fractional sum to fractional powers of the operator $1 - tau^{-1}$ with the right shift $tau^{-1}$ on weighted sequence spaces. Causality of the solution operator plays a crucial role for the description of initial value problems.
We consider general difference equations $u_{n+1} = F(u)_n$ for $n in mathbb{Z}$ on exponentially weighted $ell_2$ spaces of two-sided Hilbert space valued sequences $u$ and discuss initial value problems. As an application of the Hilbert space appro
We study fractional differential equations of Riemann-Liouville and Caputo type in Hilbert spaces. Using exponentially weighted spaces of functions defined on $mathbb{R}$, we define fractional operators by means of a functional calculus using the Fou
We seek solutions $uinR^n$ to the semilinear elliptic partial difference equation $-Lu + f_s(u) = 0$, where $L$ is the matrix corresponding to the Laplacian operator on a graph $G$ and $f_s$ is a one-parameter family of nonlinear functions. This arti
In this paper, we study slow manifolds for infinite-dimensional evolution equations. We compare two approaches: an abstract evolution equation framework and a finite-dimensional spectral Galerkin approximation. We prove that the slow manifolds constr
We introduce mesoscopic and macroscopic model equations of chemotaxis with anomalous subdiffusion for modelling chemically directed transport of biological organisms in changing chemical environments with diffusion hindered by traps or macro-molecula