ﻻ يوجد ملخص باللغة العربية
We consider a quantum-critical metal with interaction mediated by fluctuations of a critical order parameter. This interaction gives rise to two competing tendencies -- pairing and non-Fermi liquid behavior. Due to competition, the pairing develops below a finite $T_p $, however its prominent feedback on the fermionic self-energy develops only at a lower $ T_{cross}$. At $T<T_{cross}$ the system behavior is similar to that of a BCS supercoductor -- the density of states (DOS) and the spectral function (SF) have sharp gaps which close as $T$ increases. At higher $T_{cross}<T<T_{p}$ the DOS has a dip, which {it fills in} with increasing $T$. The SF in this region shows either the same behavior as the DOS, or has a peak at $omega =0$ (the Fermi arc), depending on the position on the Fermi surface. We argue that phase fluctuations are strong in this $T$ range, and the actual $T_c sim T_{cross}$, while $T_p$ marks the onset of pseugogap behavior. We compare our theory with the behavior of optimally doped cuprates.
We use Angle Resolved Photoemission Spectroscopy (ARPES) to study the relationship between the pseudogap, pairing and Fermi arcs in cuprates. High quality data measured over a wide range of dopings reveals a consistent picture of Fermiology and pairi
We solve by Dynamical Mean Field Theory a toy-model which has a phase diagram strikingly similar to that of high $T_c$ superconductors: a bell-shaped superconducting region adjacent the Mott insulator and a normal phase that evolves from a convention
Using determinantal quantum Monte Carlo, we compute the properties of a lattice model with spin $frac 1 2$ itinerant electrons tuned through a quantum phase transition to an Ising nematic phase. The nematic fluctuations induce superconductivity with
High-temperature superconductivity in iron-arsenic materials (pnictides) near an antiferromagnetic phase raises the possibility of spin-fluctuation-mediated pairing. However, the interplay between antiferromagnetic fluctuations and superconductivity
We present results of Raman scattering experiments in differently doped Bi-2212 single crystals. Below Tc the spectra show pair-breaking features in the whole doping range. The low frequency power laws confirm the existence of a $d_{x^2-y^2}$-wave or