ترغب بنشر مسار تعليمي؟ اضغط هنا

Supersensitive estimation of the coupling rate in cavity optomechanics with an impurity-doped Bose-Einstein condensate

51   0   0.0 ( 0 )
 نشر من قبل Qingshou Tan
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a scheme to implement a supersensitive estimation of the coupling strength in a hybrid optomechanical system which consists of a cavity-Bose-Einstein condensate system coupled to an impurity. This method can dramatically improve the estimation precision even when the involved photon number is small. The quantum Fisher information indicates that the Heisenberg scale sensitivity of the coupling rate could be obtained when the photon loss rate is smaller than the corresponding critical value in the input of either coherent state or squeezed state. The critical photon decay rate for the coherent state is larger than that of the squeezed state, and the coherent state input case is more robust against the photon loss than the squeezed state case. We also present the measurement scheme which can saturate the quantum Cramer-Rao bound.



قيم البحث

اقرأ أيضاً

177 - D. Nagy , G. Szirmai , P. Domokos 2013
The dispersive interaction of a Bose-Einstein condensate with a single mode of a high-finesse optical cavity realizes the radiation pressure coupling Hamiltonian. In this system the role of the mechanical oscillator is played by a single condensate e xcitation mode that is selected by the cavity mode function. We study the effect of atomic s-wave collisions and show that it merely renormalizes parameters of the usual optomechanical interaction. Moreover, we show that even in the case of strong harmonic confinement---which invalidates the use of Bloch states---a single excitation mode of the Bose-Einstein condensate couples significantly to the light field, that is the simplified picture of a single mechanical oscillator mode remains valid.
Cavity quantum electrodynamics (cavity QED) describes the coherent interaction between matter and an electromagnetic field confined within a resonator structure, and is providing a useful platform for developing concepts in quantum information proces sing. By using high-quality resonators, a strong coupling regime can be reached experimentally in which atoms coherently exchange a photon with a single light-field mode many times before dissipation sets in. This has led to fundamental studies with both microwave and optical resonators. To meet the challenges posed by quantum state engineering and quantum information processing, recent experiments have focused on laser cooling and trapping of atoms inside an optical cavity. However, the tremendous degree of control over atomic gases achieved with Bose-Einstein condensation has so far not been used for cavity QED. Here we achieve the strong coupling of a Bose-Einstein condensate to the quantized field of an ultrahigh-finesse optical cavity and present a measurement of its eigenenergy spectrum. This is a conceptually new regime of cavity QED, in which all atoms occupy a single mode of a matter-wave field and couple identically to the light field, sharing a single excitation. This opens possibilities ranging from quantum communication to a wealth of new phenomena that can be expected in the many-body physics of quantum gases with cavity-mediated interactions.
276 - D. Nagy , G. Szirmai , P. Domokos 2008
The spatial self-organization of a Bose-Einstein condensate (BEC) in a high-finesse linear optical cavity is discussed. The condensate atoms are laser-driven from the side and scatter photons into the cavity. Above a critical pump intensity the homog eneous condensate evolves into a stable pattern bound by the cavity field. The transition point is determined analytically from a mean-field theory. We calculate the lowest lying Bogoliubov excitations of the coupled BEC-cavity system and the quantum depletion due to the atom-field coupling.
164 - G. Szirmai , D. Nagy , P. Domokos 2008
Quantum fluctuations of a cavity field coupled into the motion of ultracold bosons can be strongly amplified by a mechanism analogous to the Petermann excess noise factor in lasers with unstable cavities. For a Bose-Einstein condensate in a stable op tical resonator, the excess noise effect amounts to a significant depletion on long timescales.
We propose a novel type of composite light-matter magnetometer based on a transversely driven multi-component Bose-Einstein condensate coupled to two distinct electromagnetic modes of a linear cavity. Above the critical pump strength, the change of t he population imbalance of the condensate caused by an external magnetic field entails the change of relative photon number of the two cavity modes. Monitoring the cavity output fields thus allows for nondestructive measurement of the magnetic field in real time. We show that the sensitivity of the proposed magnetometer exhibits Heisenberg-like scaling with respect to the atom number. For state-of-the-art experimental parameters, we calculate the lower bound on the sensitivity of such a magnetometer to be of the order of fT/$sqrt{mathrm{Hz}}$--pT/$sqrt{mathrm{Hz}}$ for a condensate of $10^4$ atoms with coherence times of the order of several ms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا