ﻻ يوجد ملخص باللغة العربية
We present the curation and verification of a new combined optical and near infrared dataset for cosmology and astrophysics, derived from the combination of $ugri$-band imaging from the Kilo Degree Survey (KiDS) and $ZY!J!H!K_{rm s}$-band imaging from the VISTA Kilo degree Infrared Galaxy (VIKING) survey. This dataset is unrivaled in cosmological imaging surveys due to its combination of area ($458$ deg$^2$ before masking), depth ($rle25$), and wavelength coverage ($ugriZY!J!H!K_{rm s}$). The combination of survey depth, area, and (most importantly) wavelength coverage allows significant reductions in systematic uncertainties (i.e. reductions of between 10 and 60% in bias, outlier rate, and scatter) in photometric-to-spectroscopic redshift comparisons, compared to the optical-only case at photo-$z$ above $0.7$. The complementarity between our optical and NIR surveys means that over $80%$ of our sources, across all photo-$z$, have significant detections (i.e. not upper limits) in our $8$ reddest bands. We derive photometry, photo-$z$, and stellar masses for all sources in the survey, and verify these data products against existing spectroscopic galaxy samples. We demonstrate the fidelity of our higher-level data products by constructing the survey stellar mass functions in 8 volume-complete redshift bins. We find that these photometrically derived mass functions provide excellent agreement with previous mass evolution studies derived using spectroscopic surveys. The primary data products presented in this paper are publicly available at http://kids.strw.leidenuniv.nl/.
We present a combined tomographic weak gravitational lensing analysis of the Kilo Degree Survey (KV450) and the Dark Energy Survey (DES-Y1). We homogenize the analysis of these two public cosmic shear datasets by adopting consistent priors and modeli
We present a tomographic cosmic shear analysis of the Kilo-Degree Survey (KiDS) combined with the VISTA Kilo-Degree Infrared Galaxy Survey (VIKING). This is the first time that a full optical to near-infrared data set has been used for a wide-field c
We present the Cosmology and Astrophysics with MachinE Learning Simulations --CAMELS-- project. CAMELS is a suite of 4,233 cosmological simulations of $(25~h^{-1}{rm Mpc})^3$ volume each: 2,184 state-of-the-art (magneto-)hydrodynamic simulations run
Future Square Kilometre Array (SKA) surveys are expected to generate huge datasets of 21cm maps on cosmological scales from the Epoch of Reionization (EoR). We assess the viability of exploiting machine learning techniques, namely, convolutional neur
The NGVS-IR project (Next Generation Virgo Survey - Infrared) is a contiguous near-infrared imaging survey of the Virgo cluster of galaxies. It complements the optical wide-field survey of Virgo (NGVS). The current state of NGVS-IR consists of Ks-ban