ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing transport in quantum many-fermion simulations via quantum loop topography

84   0   0.0 ( 0 )
 نشر من قبل Yi Zhang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum many-fermion systems give rise to diverse states of matter that often reveal themselves in distinctive transport properties. While some of these states can be captured by microscopic models accessible to numerical exact quantum Monte Carlo simulations, it nevertheless remains challenging to numerically access their transport properties. Here we demonstrate that quantum loop topography (QLT) can be used to directly probe transport by machine learning current-current correlations in imaginary time. We showcase this approach by studying the emergence of superconducting fluctuations in the negative-U Hubbard model and a spin-fermion model for a metallic quantum critical point. For both sign-free models, we find that the QLT approach detects a change in transport in very good agreement with their established phase diagrams. These proof-of-principle calculations combined with the numerical efficiency of the QLT approach point a way to identify hitherto elusive transport phenomena such as non-Fermi liquids using machine learning algorithms.



قيم البحث

اقرأ أيضاً

We investigate the quantum phase transitions of a disordered nanowire from superconducting to metallic behavior by employing extensive Monte Carlo simulations. To this end, we map the quantum action onto a (1+1)-dimensional classical XY model with lo ng-range interactions in imaginary time. We then analyze the finite-size scaling behavior of the order parameter susceptibility, the correlation time, the superfluid density, and the compressibility. We find strong numerical evidence for the critical behavior to be of infinite-randomness type and to belong to the random transverse-field Ising universality class, as predicted by a recent strong disorder renormalization group calculation.
363 - Thomas Vojta 2018
Impurities, defects, and other types of imperfections are ubiquitous in realistic quantum many-body systems and essentially unavoidable in solid state materials. Often, such random disorder is viewed purely negatively as it is believed to prevent int eresting new quantum states of matter from forming and to smear out sharp features associated with the phase transitions between them. However, disorder is also responsible for a variety of interesting novel phenomena that do not have clean counterparts. These include Anderson localization of single particle wave functions, many-body localization in isolated many-body systems, exotic quantum critical points, and glassy ground state phases. This brief review focuses on two separate but related subtopics in this field. First, we review under what conditions different types of randomness affect the stability of symmetry-broken low-temperature phases in quantum many-body systems and the stability of the corresponding phase transitions. Second, we discuss the fate of quantum phase transitions that are destabilized by disorder as well as the unconventional quantum Griffiths phases that emerge in their vicinity.
Non-Fermi liquid physics is a ubiquitous feature in strongly correlated metals, manifesting itself in anomalous transport properties, such as a $T$-linear resistivity in experiments. However, its theoretical understanding in terms of microscopic mode ls is lacking despite decades of conceptual work and attempted numerical simulations. Here we demonstrate that a combination of sign problem-free quantum Monte Carlo sampling and quantum loop topography, a physics-inspired machine learning approach, can map out the emergence of non-Fermi liquid physics in the vicinity of a quantum critical point with little prior knowledge. Using only three parameter points for training the underlying neural network, we are able to reproducibly identify a stable non-Fermi liquid regime tracing the fan of a metallic quantum critical points at the onset of both spin-density wave and nematic order. Our study thereby provides an important proof-of-principle example that new physics can be detected via unbiased machine-learning approaches.
Characterizing states of matter through the lens of their ergodic properties is a fascinating new direction of research. In the quantum realm, the many-body localization (MBL) was proposed to be the paradigmatic ergodicity breaking phenomenon, which extends the concept of Anderson localization to interacting systems. At the same time, random matrix theory has established a powerful framework for characterizing the onset of quantum chaos and ergodicity (or the absence thereof) in quantum many-body systems. Here we numerically study the spectral statistics of disordered interacting spin chains, which represent prototype models expected to exhibit MBL. We study the ergodicity indicator $g=log_{10}(t_{rm H}/t_{rm Th})$, which is defined through the ratio of two characteristic many-body time scales, the Thouless time $t_{rm Th}$ and the Heisenberg time $t_{rm H}$, and hence resembles the logarithm of the dimensionless conductance introduced in the context of Anderson localization. We argue that the ergodicity breaking transition in interacting spin chains occurs when both time scales are of the same order, $t_{rm Th} approx t_{rm H}$, and $g$ becomes a system-size independent constant. Hence, the ergodicity breaking transition in many-body systems carries certain analogies with the Anderson localization transition. Intriguingly, using a Berezinskii-Kosterlitz-Thouless correlation length we observe a scaling solution of $g$ across the transition, which allows for detection of the crossing point in finite systems. We discuss the observation that scaled results in finite systems by increasing the system size exhibit a flow towards the quantum chaotic regime.
We show that the magnetization of a single `qubit spin weakly coupled to an otherwise isolated disordered spin chain exhibits periodic revivals in the localized regime, and retains an imprint of its initial magnetization at infinite time. We demonstr ate that the revival rate is strongly suppressed upon adding interactions after a time scale corresponding to the onset of the dephasing that distinguishes many-body localized phases from Anderson insulators. In contrast, the ergodic phase acts as a bath for the qubit, with no revivals visible on the time scales studied. The suppression of quantum revivals of local observables provides a quantitative, experimentally observable alternative to entanglement growth as a measure of the `non-ergodic but dephasing nature of many-body localized systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا