ترغب بنشر مسار تعليمي؟ اضغط هنا

Computations of eigenvalues and resonances on perturbed hyperbolic surfaces with cusps

100   0   0.0 ( 0 )
 نشر من قبل Michael Levitin
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we describe a simple method that allows for a fast direct computation of the scattering matrix for a surface with hyperbolic cusps from the Neumann-to-Dirichlet map on the compact manifold with boundary obtained by removing the cusps. We illustrate that even if the Neumann-to-Dirichlet map is obtained by a Finite Element Method (FEM) one can achieve good accuracy for the scattering matrix. We give various interesting examples of how this can be used to investigate the behaviour of resonances under conformal perturbations or when moving in Teichm{u}ller space. For example, based on numerical experiments we rediscover the four arithmetic surfaces of genus one with one cusp. This demonstrates that it is possible to identify arithmetic objects using FEM.



قيم البحث

اقرأ أيضاً

We define resonances for finitely perturbed quantum walks as poles of the scattering matrix in the lower half plane. We show a resonance expansion which describes the time evolution in terms of resonances and corresponding Jordan chains. In particula r, the decay rate of the survival probability is given by the imaginary part of resonances and the multiplicity. We prove generic simplicity of the resonances, although there are quantum walks with multiple resonances.
Suppose that $(X, g)$ is a conformally compact $(n+1)$-dimensional manifold that is hyperbolic at infinity in the sense that outside of a compact set $K subset X$ the sectional curvatures of $g$ are identically equal to minus one. We prove that the c ounting function for the resolvent resonances has maximal order of growth $(n+1)$ generically for such manifolds.
50 - Anke Pohl , Louis Soares 2018
We investigate how bounds of resonance counting functions for Schottky surfaces behave under transitions to covering surfaces of finite degree. We consider the classical resonance counting function asking for the number of resonances in large (and gr owing) disks centered at the origin of $mathbb{C}$, as well as the (fractal) resonance counting function asking for the number of resonances in boxes near the axis of the critical exponent. For the former counting function we provide a transfer-operator-based proof that bounding constants can be chosen such that the transformation behavior under transition to covers is as for the Weyl law in the case of surfaces of finite area. For the latter counting function we deduce a bound in terms of the covering degree and the minimal length of a periodic geodesic on the covering surface. This yields an improved fractal Weyl upper bound. In the setting of Schottky surfaces, these estimates refine previous results due to Guillop{e}--Zworski and Guillop{e}--Lin--Zworski. When applied to principal congruence covers, these results yield new estimates for the resonance counting functions in the level aspect, which have recently been investigated by Jakobson--Naud. The techniques used in this article are based on the thermodynamic formalism for $L$-functions (twisted Selberg zeta functions), and twisted transfer operators.
For compact and for convex co-compact oriented hyperbolic surfaces, we prove an explicit correspondence between classical Ruelle resonant states and quantum resonant states, except at negative integers where the correspondence involves holomorphic sections of line bundles.
The question of whether there exists an approximation procedure to compute the resonances of any Helmholtz resonator, regardless of its particular shape, is addressed. A positive answer is given, and it is shown that all that one has to assume is tha t the resonator chamber is bounded and that its boundary is $mathcal C^2$. The proof is constructive, providing a universal algorithm which only needs to access the values of the characteristic function of the chamber at any requested point.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا