ﻻ يوجد ملخص باللغة العربية
Gravitational wave observatories have always been affected by tele-seismic earthquakes leading to a decrease in duty cycle and coincident observation time. In this analysis, we leverage the power of machine learning algorithms and archival seismic data to predict the ground motion and the state of the gravitational wave interferometer during the event of an earthquake. We demonstrate improvement from a factor of 5 to a factor of 2.5 in scatter of the error in the predicted ground velocity over a previous model fitting based approach. The level of accuracy achieved with this scheme makes it possible to switch control configuration during periods of excessive ground motion thus preventing the interferometer from losing lock. To further assess the accuracy and utility of our approach, we use IRIS seismic network data and obtain similar levels of agreement between the estimates and the measured amplitudes. The performance indicates that such an archival or prediction scheme can be extended beyond the realm of gravitational wave detector sites for hazard-based early warning alerts.
In this paper, we report on the construction of a deep Artificial Neural Network (ANN) to localize simulated gravitational wave signals in the sky with high accuracy. We have modelled the sky as a sphere and have considered cases where the sphere is
With the advent of gravitational wave astronomy, techniques to extend the reach of gravitational wave detectors are desired. In addition to the stellar-mass black hole and neutron star mergers already detected, many more are below the surface of the
Searches for gravitational-wave counterparts have been going in earnest since GW170817 and the discovery of AT2017gfo. Since then, the lack of detection of other optical counterparts connected to binary neutron star or black hole - neutron star candi
Increasing the laser power is essential to improve the sensitivity of interferometric gravitational wave detectors. However, optomechanical parametric instabilities can set a limit to that power. It is of major importance to understand and characteri
The LIGO observatories detect gravitational waves through monitoring changes in the detectors length down to below $10^{-19}$,$m/sqrt{Hz}$ variation---a small fraction of the size of the atoms that make up the detector. To achieve this sensitivity, t