ﻻ يوجد ملخص باللغة العربية
We introduce a new estimator for the mean pairwise velocities of galaxy clusters, which is based on the measurement of the clusters $textit{transverse}$ velocity components. The Rees-Sciama (RS) effect offers an opportunity to measure transverse peculiar velocities through its distinct dipolar signature around the halo centers in the Cosmic Microwave Background (CMB) temperature map. We exploit this dipolar structure to extract the magnitude and direction of the transverse velocity vectors from CMB maps simulated with the expected characteristics of future surveys like CMB-S4. Although in the presence of lensed CMB and instrumental noise individual velocities are not reliably reconstructed, we demonstrate that the mean pairwise velocity measurement obtained using the estimator yields a signal-to-noise ratio of $5.2$ for $sim21,000$ halos with $M > 7times10^{13}rm M_odot$ in a $40times40$ [deg$^2$] patch at $z=0.5$. While the proposed estimator carries promising prospects for measuring pairwise velocities through the RS effect in CMB stage IV experiments, its applications extend to any other potential probe of transverse velocities.
Observations of the Cosmic Microwave Background (CMB) have revealed an unexpected quadrupole-octopole alignment along a preferred axis pointing toward the Virgo cluster. We here investigate whether this feature can be explained in the framework of th
We discuss how to use the Rees-Sciama (RS) effect associated with merging clusters of galaxies to measure their kinematic properties. In a previous work (Rubino-Martin et al. 2004), the morphology and symmetries of the effect were examined by means o
We study the potential of the kinematic SZ effect as a probe for cosmology, focusing on the pairwise method. The main challenge is disentangling the cosmologically interesting mean pairwise velocity from the cluster optical depth and the associated u
We present a new measurement of the kinetic Sunyaev-Zeldovich effect (kSZ) using Planck cosmic microwave background (CMB) and Baryon Oscillation Spectroscopic Survey (BOSS) data. Using the `LowZ North/South galaxy catalogue from BOSS DR12, and the gr
We study the probability distribution function (PDF) of relative velocity between two different dark matter halos (i.e. pairwise velocity) with a set of high-resolution cosmological $N$-body simulations. We investigate the pairwise velocity PDFs over