ترغب بنشر مسار تعليمي؟ اضغط هنا

Scalarized black holes in the presence of the coupling to Gauss-Bonnet gravity

110   0   0.0 ( 0 )
 نشر من قبل Masato Minamitsuji
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study static and spherically symmetric black hole (BH) solutions in the scalar-tensor theories with the coupling of the scalar field to the Gauss-Bonnet (GB) term $xi (phi) R_{rm GB}$, where $R_{rm GB}:=R^2-4R^{alphabeta}R_{alphabeta}+R^{alphabetamu u}R_{alphabetamu u}$ is the GB invariant and $xi(phi)$ is a function of the scalar field $phi$. Recently, it was shown that in these theories scalarized static and spherically symmetric BH solutions which are different from the Schwarzschild solution and possess the nontrivial profiles of the scalar field can be realized for certain choices of the coupling functions and parameters. These scalarized BH solutions are classified in terms of the number of nodes of the scalar field. It was then pointed out that in the case of the pure quadratic order coupling to the GB term, $xi(phi)=eta phi^2/8$, scalarized BH solutions with any number of nodes are unstable against the radial perturbation. In order to see how a higher order power of $phi$ in the coupling function $xi(phi)$ affects the properties of the scalarized BHs and their stability, we investigate scalarized BH solutions in the presence of the quartic order term in the GB coupling function, $xi(phi)=eta phi^2 (1+alpha phi^2)/8$. We clarify that the existence of the higher order term in the coupling function can realize scalarized BHs with zero nodes of the scalar field which are stable against the radial perturbation.



قيم البحث

اقرأ أيضاً

We report on a numerical investigation of the stability of scalarized black holes in Einstein dilaton Gauss-Bonnet (EdGB) gravity in the full dynamical theory, though restricted to spherical symmetry. We find evidence that for sufficiently small curv ature-couplings the resulting scalarized black hole solutions are nonlinearly stable. For such small couplings, we show that an elliptic region forms inside these EdGB black hole spacetimes (prior to any curvature singularity), and give evidence that this region remains censored from asymptotic view. However, for coupling values superextremal relative to a given black hole mass, an elliptic region forms exterior to the horizon, implying the exterior Cauchy problem is ill-posed in this regime.
144 - Maria Okounkova 2019
In order to perform model-dependent tests of general relativity with gravitational wave observations, we must have access to numerical relativity binary black hole waveforms in theories beyond general relativity (GR). In this study, we focus on order -reduced Einstein dilaton Gauss-Bonnet gravity (EDGB), a higher curvature beyond-GR theory with motivations in string theory. The stability of single, rotating black holes in EDGB is unknown, but is a necessary condition for being able to simulate binary black hole systems (especially the early-inspiral and late ringdown stages) in EDGB. We thus investigate the stability of rotating black holes in order-reduced EDGB. We evolve the leading-order EDGB scalar field and EDGB spacetime metric deformation on a rotating black hole background, for a variety of spins. We find that the EDGB metric deformation exhibits linear growth, but that this level of growth exponentially converges to zero with numerical resolution. Thus, we conclude that rotating black holes in EDGB are numerically stable to leading-order, thus satisfying our necessary condition for performing binary black hole simulations in EDGB.
We obtain rotating black hole solutions to the novel 3D Gauss-Bonnet theory of gravity recently proposed. These solutions generalize the BTZ metric and are not of constant curvature. They possess an ergoregion and outer horizon, but do not have an in ner horizon. We present their basic properties and show that they break the universality of thermodynamics present for their static charged counterparts, whose properties we also discuss. Extending our considerations to higher dimensions, we also obtain novel 4D Gauss-Bonnet rotating black strings.
We investigate the presence of a black hole black string phase transition in Einstein Gauss Bonnet (EGB) gravity in the large dimension limit. The merger point is the static spacetime connecting the black string phase with the black hole phase. We co nsider several ranges of the Gauss-Bonnet parameter. We find that there is a range when the Gauss-Bonnet corrections are subordinate to the Einstein gravity terms in the large dimension limit, and yet the merger point geometry does not approach a black hole away from the neck. We cannot rule out a topology changing phase transition as argued by Kol. However as the merger point geometry does not approach the black hole geometry asymptotically it is not obvious that the transition is directly to a black hole phase. We also demonstrate that for another range of the Gauss-Bonnet parameter, the merger point geometry approaches the black hole geometry asymptotically when a certain parameter depending on the Gauss-Bonnet parameter $alpha$ and on the parameters in the Einstein-Gauss-Bonnet black hole metric is small enough.
We study the instability of the charged Gauss-Bonnet de Sitter black holes under gravito-electromagnetic perturbations. We adopt two criteria to search for an instability of the scalar type perturbations, including the local instability criterion bas ed on the $AdS_2$ Breitenl{o}hner-Freedman (BF) bound at extremality and the dynamical instability via quasinormal modes by full numerical analysis. We uncover the gravitational instability in five spacetime dimensions and above, and construct the complete parameter space in terms of the ratio of event and cosmological horizons and the Gauss-Bonnet coupling. We show that the BF bound violation is a sufficient but not necessary condition for the presence of dynamical instability. While the physical origin of the instability without the Gauss-Bonnet term has been argued to be from the $AdS_2$ BF bound violation, our analysis suggests that the BF bound violation can not account for all physical origin of the instability for the charged Gauss-Bonnet black holes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا