ﻻ يوجد ملخص باللغة العربية
The European FP7 project DIANA has performed a coherent analysis of a large set of observations from protoplanetary disks by means of thermo-chemical disk models. The collected data include extinction-corrected stellar UV and X-ray input spectra (as seen by the disk), photometric fluxes, low and high resolution spectra, interferometric data, emission line fluxes, line velocity profiles and line maps. We define and apply a standardized modelling procedure to simultaneously fit all these data by state-of-the-art modelling codes (ProDiMo, MCFOST, MCMax) which solve the continuum and line radiative transfer, disk chemistry, and the heating & cooling balance for both the gas and the dust. We allow for up to two radial disk zones to obtain our best-fitting models that have about 20 free parameters. This approach is novel and unique in its completeness and level of consistency. In this paper, we present the results from pure SED fitting for 27 objects and from the all inclusive DIANA-standard models for 14 objects. We fit most infrared to millimeter emission line fluxes within a factor better than 3, simultaneously with SED, PAH features and radial brightness profiles extracted from images at various wavelengths. Our analysis shows a number of Herbig Ae and T Tauri stars with very cold and massive outer disks which are situated at least partly in the shadow of a tall and gas-rich inner disk. The disk masses derived are often in excess to previously published values, since these disks are partially optically thick even at millimeter wavelength and so cold that they emit less than in the Rayleigh-Jeans limit. Some line observations cannot be reproduced by the models, probably caused by foreground cloud absorption or object variability. Our data collection, the fitted physical disk parameters as well as the full model output are available at an online database (http://www.univie.ac.at/diana).
We propose a set of standard assumptions for the modelling of Class II and III protoplanetary disks, which includes detailed continuum radiative transfer, thermo-chemical modelling of gas and ice, and line radiative transfer from optical to cm wavele
Aims. We define a small and large chemical network which can be used for the quantitative simultaneous analysis of molecular emission from the near-IR to the submm. We revise reactions of excited molecular hydrogen, which are not included in UMIST, t
Consistent modeling of protoplanetary disks requires the simultaneous solution of both continuum and line radiative transfer, heating/cooling balance between dust and gas and, of course, chemistry. Such models depend on panchromatic observations that
Theoretical models of the ionization state in protoplanetary disks suggest the existence of large areas with low ionization and weak coupling between the gas and magnetic fields. In this regime hydrodynamical instabilities may become important. In th
ALMA observations of protoplanetary disks confirm earlier indications that there is a clear difference between the dust and gas radial extents. The origin of this difference is still debated, with both radial drift of the dust and optical depth effec