ﻻ يوجد ملخص باللغة العربية
Channel state information (CSI) is of vital importance in wireless communication systems. Existing CSI acquisition methods usually rely on pilot transmissions, and geographically separated base stations (BSs) with non-correlated CSI need to be assigned with orthogonal pilots which occupy excessive system resources. Our previous work adopts a data-driven deep learning based approach which leverages the CSI at a local BS to infer the CSI remotely, however the relevance of CSI between separated BSs is not specified explicitly. In this paper, we exploit a model-based methodology to derive the Cramer-Rao lower bound (CRLB) of remote CSI inference given the local CSI. Although the model is simplified, the derived CRLB explicitly illustrates the relationship between the inference performance and several key system parameters, e.g., terminal distance and antenna array size. In particular, it shows that by leveraging multiple local BSs, the inference error exhibits a larger power-law decay rate (w.r.t. number of antennas), compared with a single local BS; this explains and validates our findings in evaluating the deep-neural-network-based (DNN-based) CSI inference. We further improve on the DNN-based method by employing dropout and deeper networks, and show an inference performance of approximately $90%$ accuracy in a realistic scenario with CSI generated by a ray-tracing simulator.
To achieve the joint active and passive beamforming gains in the reconfigurable intelligent surface assisted millimeter wave system, the reflected cascade channel needs to be accurately estimated. Many strategies have been proposed in the literature
In this paper, we propose a new perspective for quantizing a signal and more specifically the channel state information (CSI). The proposed point of view is fully relevant for a receiver which has to send a quantized version of the channel state to t
The analytic expression of CRLB and the maximum likelihood estimator for the sample frequency correlation matrices in doubly selective fading channels for OFDM systems are reported in this paper. According to the analytical and numerical results, the
The analytic expression of CRLB and the maximum likelihood estimator for spatial correlation matrices in time-varying multipath fading channels for MIMO OFDM systems are reported in this paper. The analytical and numerical results reveal that the amo
In this paper we explore the maximum precision attainable in the location of a point source imaged by a pixel array detector in the presence of a background, as a function of the detector properties. For this we use a well-known result from parametri