ﻻ يوجد ملخص باللغة العربية
Deep neural networks are known to suffer the catastrophic forgetting problem, where they tend to forget the knowledge from the previous tasks when sequentially learning new tasks. Such failure hinders the application of deep learning based vision system in continual learning settings. In this work, we present a simple yet surprisingly effective way of preventing catastrophic forgetting. Our method, called Few-shot Self Reminder (FSR), regularizes the neural net from changing its learned behaviour by performing logit matching on selected samples kept in episodic memory from the old tasks. Surprisingly, this simplistic approach only requires to retrain a small amount of data in order to outperform previous methods in knowledge retention. We demonstrate the superiority of our method to the previous ones in two different continual learning settings on popular benchmarks, as well as a new continual learning problem where tasks are designed to be more dissimilar.
Interpreting the behaviors of Deep Neural Networks (usually considered as a black box) is critical especially when they are now being widely adopted over diverse aspects of human life. Taking the advancements from Explainable Artificial Intelligent,
Artificial neural networks face the well-known problem of catastrophic forgetting. Whats worse, the degradation of previously learned skills becomes more severe as the task sequence increases, known as the long-term catastrophic forgetting. It is due
The ability to learn tasks in a sequential fashion is crucial to the development of artificial intelligence. Neural networks are not, in general, capable of this and it has been widely thought that catastrophic forgetting is an inevitable feature of
Catastrophic forgetting describes the fact that machine learning models will likely forget the knowledge of previously learned tasks after the learning process of a new one. It is a vital problem in the continual learning scenario and recently has at
Catastrophic forgetting remains a severe hindrance to the broad application of artificial neural networks (ANNs), however, it continues to be a poorly understood phenomenon. Despite the extensive amount of work on catastrophic forgetting, we argue th