ﻻ يوجد ملخص باللغة العربية
n-type Ge/SiGe terahertz quantum cascade laser are investigated using non-equilibrium Greens functions calculations. We compare the temperature dependence of the terahertz gain properties with an equivalent GaAs/AlGaAs QCL design. In the Ge/SiGe case, the gain is found to be much more robust to temperature increase, enabling operation up to room temperature. The better temperature robustness with respect to III-V is attributed to the much weaker interaction with optical phonons. The effect of lower interface quality is investigated and can be partly overcome by engineering smoother quantum confinement via multiple barrier heights.
We report electroluminescence originating from L-valley transitions in n-type Ge/Si$_{0.15}$Ge$_{0.85}$ quantum cascade structures centered at 3.4 and 4.9 THz with a line broadening of $Delta f/f approx 0.2$. Three strain-compensated heterostructures
Resonant phonon depopulation terahertz quantum cascade lasers based on vertical and diagonal lasing transitions are systematically compared using a well established ensemble Monte Carlo approach. The analysis shows that for operating temperatures bel
We present a two-quantum well THz intersubband laser operating up to 192 K. The structure has been optimized with a non-equilibrium Greens function model. The result of this optimization was confirmed experimentally by growing, processing and measuri
High power single mode quantum cascade lasers with a narrow far field are important for several applications including surgery or military countermeasure. Existing technologies suffer from drawbacks such as operation temperature and scalability. In t
We report on a new design of terahertz quantum cascade laser based on a single, potential-inserted quantum well active region. The quantum well properties are engineered through single monolayer InAs inserts. The modeling is based on atomistic, spds*