ﻻ يوجد ملخص باللغة العربية
We consider a bipartite transformation that we call emph{self-embezzlement} and use it to prove a constant gap between the capabilities of two models of quantum information: the conventional model, where bipartite systems are represented by tensor products of Hilbert spaces; and a natural model of quantum information processing for abstract states on C*-algebras, where joint systems are represented by tensor products of C*-algebras. We call this the C*-circuit model and show that it is a special case of the commuting-operator model (in that it can be translated into such a model). For the conventional model, we show that there exists a constant $epsilon_0 > 0$ such that self-embezzlement cannot be achieved with precision parameter less than $epsilon_0$ (i.e., the fidelity cannot be greater than $1 - epsilon_0$); whereas, in the C*-circuit model---as well as in a commuting-operator model---the precision can be $0$ (i.e., fidelity~$1$).
Van Dam and Hayden introduced a concept commonly referred to as embezzlement, where, for any entangled quantum state $phi$, there is an entangled catalyst state $psi$, from which a high fidelity approximation of $phi otimes psi$ can be produced using
We present an instance of a task of mininum-error discrimination of two qubit-qubit quantum channels for which a sequential strategy outperforms any parallel strategy. We then establish two new classes of strategies for channel discrimination that in
This paper is about the reduced group C*-algebras of real reductive groups, and about Hilbert C*-modules over these C*-algebras. We shall do three things. First we shall apply theorems from the tempered representation theory of reductive groups to de
Quantum key distribution (QKD) is a pioneering quantum technology on the brink of widespread deployment. Nevertheless, the distribution of secret keys beyond a few 100 kilometers at practical rates remains a major challenge. One approach to circumven
A host algebra of a (possibly infinite dimensional) Lie group $G$ is a $C^*$-algebra whose representations are in one-to-one correspondence with certain continuous unitary representations $pi colon G to U(cH)$. In this paper we present a new approach