ترغب بنشر مسار تعليمي؟ اضغط هنا

Constant gap between conventional strategies and those based on C*-dynamics for self-embezzlement

82   0   0.0 ( 0 )
 نشر من قبل Vern Paulsen
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a bipartite transformation that we call emph{self-embezzlement} and use it to prove a constant gap between the capabilities of two models of quantum information: the conventional model, where bipartite systems are represented by tensor products of Hilbert spaces; and a natural model of quantum information processing for abstract states on C*-algebras, where joint systems are represented by tensor products of C*-algebras. We call this the C*-circuit model and show that it is a special case of the commuting-operator model (in that it can be translated into such a model). For the conventional model, we show that there exists a constant $epsilon_0 > 0$ such that self-embezzlement cannot be achieved with precision parameter less than $epsilon_0$ (i.e., the fidelity cannot be greater than $1 - epsilon_0$); whereas, in the C*-circuit model---as well as in a commuting-operator model---the precision can be $0$ (i.e., fidelity~$1$).



قيم البحث

اقرأ أيضاً

97 - Richard Cleve , Li Liu , 2016
Van Dam and Hayden introduced a concept commonly referred to as embezzlement, where, for any entangled quantum state $phi$, there is an entangled catalyst state $psi$, from which a high fidelity approximation of $phi otimes psi$ can be produced using only local operations. We investigate a version of this where the embezzlement is perfect (i.e., the fidelity is 1). We prove that perfect embezzlement is impossible in a tensor product framework, even with infinite-dimensional Hilbert spaces and infinite entanglement entropy. Then we prove that perfect embezzlement is possible in a commuting operator framework. We prove this using the theory of C*-algebras and we also provide an explicit construction. Next, we apply our results to analyze perfe
We present an instance of a task of mininum-error discrimination of two qubit-qubit quantum channels for which a sequential strategy outperforms any parallel strategy. We then establish two new classes of strategies for channel discrimination that in volve indefinite causal order and show that there exists a strict hierarchy among the performance of all four strategies. Our proof technique employs a general method of computer-assisted proofs. We also provide a systematic method for finding pairs of channels that showcase this phenomenon, demonstrating that the hierarchy between the strategies is not exclusive to our main example.
This paper is about the reduced group C*-algebras of real reductive groups, and about Hilbert C*-modules over these C*-algebras. We shall do three things. First we shall apply theorems from the tempered representation theory of reductive groups to de termine the structure of the reduced C*-algebra (the result has been known for some time, but it is difficult to assemble a full treatment from the existing literature). Second, we shall use the structure of the reduced C*-algebra to determine the structure of the Hilbert C*-bimodule that represents the functor of parabolic induction. Third, we shall prove that the parabolic induction bimodule admits a secondary inner product, using which we can define a functor of parabolic restriction in tempered representation theory. We shall prove in the sequel to this paper that parabolic restriction is adjoint, on both the left and the right, to parabolic induction.
Quantum key distribution (QKD) is a pioneering quantum technology on the brink of widespread deployment. Nevertheless, the distribution of secret keys beyond a few 100 kilometers at practical rates remains a major challenge. One approach to circumven t lossy terrestrial transmission of entangled photon pairs is the deployment of optical satellite links. Optimizing these non-static quantum links to yield the highest possible key rate is essential for their successful operation. We therefore developed a high-brightness polarization-entangled photon pair source and a receiver module with a fast steering mirror capable of satellite tracking. We employed this state-of-the-art hardware to distribute photons over a terrestrial free-space link with a distance of 143 km, and extracted secure key rates up to 300 bits per second. Contrary to fiber-based links, the channel loss in satellite downlinks is time-varying and the link time is limited to a few minutes. We therefore propose a model-based optimization of link parameters based on current channel and receiver conditions. This model and our field test will prove helpful in the design and operation of future satellite missions and advance the distribution of secret keys at high rates on a global scale.
A host algebra of a (possibly infinite dimensional) Lie group $G$ is a $C^*$-algebra whose representations are in one-to-one correspondence with certain continuous unitary representations $pi colon G to U(cH)$. In this paper we present a new approach to host algebras for infinite dimensional Lie groups which is based on smoothing operators, i.e., operators whose range is contained in the space $cH^infty$ of smooth vectors. Our first major result is a characterization of smoothing operators $A$ that in particular implies smoothness of the maps $pi^A colon G to B(cH), g mapsto pi(g)A$. The concept of a smoothing operator is particularly powerful for representations $(pi,cH)$ which are semibounded, i.e., there exists an element $x_0 ing$ for which all operators $iddpi(x)$, $x in g$, from the derived representation are uniformly bounded from above in some neighborhood of $x_0$. Our second main result asserts that this implies that $cH^infty$ coincides with the space of smooth vectors for the one-parameter group $pi_{x_0}(t) = pi(exp tx_0)$. We then show that natural types of smoothing operators can be used to obtain host algebras and that, for every metrizable Lie group, the class of semibounded representations can be covered completely by host algebras. In particular, it permits direct integral decompositions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا