ترغب بنشر مسار تعليمي؟ اضغط هنا

Swelling dynamics of surface-attached hydrogel thin films in vapor flows

122   0   0.0 ( 0 )
 نشر من قبل Antoine Chateauminois
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hydrogel coatings absorb water vapor - or other solvents - and, as such, are good candidates for antifog applications. In the present study, the transfer of vapor from the atmosphere to hydrogel thin films is measured in a situation where water vapor flows alongside the coating which is set to a temperature lower that the ambient temperature. The effect of the physico-chemistry of the hydrogel film on the swelling kinetics is particularly investigated. By using model thin films of surface-grafted polymer networks with controlled thickness, varied crosslinks density, and varied affinity for water, we were able to determine the effect of the film hygroscopy on the dynamics of swelling of the film. These experimental results are accounted for by a diffusion-advection model that is supplemented with a boundary condition at the hydrogel surface: we show that the latter can be determined from the equilibrium sorption isotherms of the polymer films. Altogether, this paper offers a predictive tool for the swelling kinetics of any hydrophilic hydrogel thin films.



قيم البحث

اقرأ أيضاً

We report on the frictional behaviour of thin poly(dimethylacrylamide) (PDMA) hydrogels films grafted on glass substrates in sliding contact with a glass spherical probe. Friction experiments are carried out at various velocities and applied normal l oads with the contact fully immersed in water. In addition to friction force measurements, a novel optical set-up is designed to image the shape of the contact under steady-state sliding. The velocity-dependence of both friction force $F_t$ and contact shape is found to be controlled by a Peclet number Pe defined as the ratio of the time $tau$ needed to drain the water out of the contact region to a contact time $a/v$, where $v$ is the sliding velocity and $a$ is the contact radius. When Pe<1, the equilibrium circular contact achieved under static normal indentation remains unchanged during sliding. Conversely, for Pe>1, a decrease in the contact area is observed together with the development of a contact asymmetry when the sliding velocity is increased. A maximum in $F_t$ is also observed at Pe~$approx$~1. These experimental observations are discussed in the light of a poroelastic contact model based on a thin film approximation. This model indicates that the observed changes in contact geometry are due to the development of a pore pressure imbalance when Pe>1. An order of magnitude estimate of the friction force and its dependence on normal load and velocity is also provided under the assumption that most of the frictional energy is dissipated by poroelastic flow at the leading and trailing edges of the sliding contact.
Hydrogels hold promise in agriculture as reservoirs of water in dry soil, potentially alleviating the burden of irrigation. However, confinement in soil can markedly reduce the ability of hydrogels to absorb water and swell, limiting their widespread adoption. Unfortunately, the underlying reason remains unknown. By directly visualizing the swelling of hydrogels confined in three-dimensional granular media, we demonstrate that the extent of hydrogel swelling is determined by the competition between the force exerted by the hydrogel due to osmotic swelling and the confining force transmitted by the surrounding grains. Furthermore, the medium can itself be restructured by hydrogel swelling, as set by the balance between the osmotic swelling force, the confining force, and intergrain friction. Together, our results provide quantitative principles to predict how hydrogels behave in confinement, potentially improving their use in agriculture as well as informing other applications such as oil recovery, construction, mechanobiology, and filtration.
We report on the transient frictional response of contacts between a rigid spherical glass probe and a micrometer-thick poly(dimethylacrylamide) hydrogel film grafted onto a glass substrate when a lateral relative motion is applied to the contact ini tially at rest. From dedicated experiments with textit{in situ} contact visualization, both the friction force and the contact size are observed to vary well beyond the occurrence of a full sliding condition at the contact interface. Depending on the imposed velocity and on the static contact time before the motion is initiated, either an overshoot or an undershoot in the friction force is observed. These observations are rationalized by considering that the transient is predominantly driven by the flow of water within the stressed hydrogel networks. From the development of a poroelastic contact model using a thin film approximation, we provide a theoretical description of the main features of the transient. We especially justify the experimental observation that the relaxation of friction force $F_t(t)$ toward steady state is uniquely dictated by the time-dependence of the contact radius $a(t)$, independently on the sliding velocity and on the applied normal load.
288 - Koji Fukao , Hiroki Koizumi 2008
Glassy dynamics was investigated for thin films of atactic polystyrene by complex electric capacitance measurements using dielectric relaxation spectroscopy. During the isothermal aging process the real part of the electric capacitance increased with time, whereas the imaginary part decreased with time. It follows that the aging time dependences of real and imaginary parts of the electric capacitance were primarily associated with change in volume (film thickness) and dielectric permittivity, respectively. Further, dielectric permittivity showed memory and rejuvenation effects in a similar manner to those observed for poly(methyl methacrylate) thin films. On the other hand, volume did not show a strong rejuvenation effect.
Solvent vapor annealing (SVA) is known to be a simple, low-cost and highly efficient technique to produce defect-free diblock copolymer (BCP) thin films. Not only can the solvent weaken the BCP segmental interactions, but it can vary the characterist ic spacing of the BCP microstructures. We carry out systematic theoretical studies on the effect of adding solvent into lamellar BCP thin films on the defect removal close to the BCP order-disorder transition. We find that the increase of the lamellar spacing, as is induced by addition of solvent, facilitates more efficient removal of defects. The stability of a particular defect in a lamellar BCP thin film is given in terms of two key controllable parameters: the amount of BCP swelling and solvent evaporation rate. Our results highlight the SVA mechanism for obtaining defect-free BCP thin films, as is highly desired in nanolithography and other industrial applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا