ترغب بنشر مسار تعليمي؟ اضغط هنا

Continuous-variable source-device-independent quantum key distribution against general attacks

88   0   0.0 ( 0 )
 نشر من قبل Yi-Chen Zhang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The continuous-variable quantum key distribution with entanglement in the middle, a semi-device-independent protocol, places the source at the untrusted third party between Alice and Bob, and thus has the advantage of high levels of security with the purpose of eliminating the assumptions about the source device. However, previous works considered the collective-attack analysis, which inevitably assumes that the states of the source has an identical and independently distributed (i.i.d) structure, and limits the application of the protocol. To solve this problem, we modify the original protocol by exploiting an energy test to monitor the potential high energy attacks an adversary may use. Our analysis removes the assumptions of the light source and the modified protocol can therefore be called source-device-independent protocol. Moreover, we analyze the security of the continuous-variable source-device-independent quantum key distribution protocol with a homodyne-homodyne structure against general coherent attacks by adapting a state-independent entropic uncertainty relation. The simulation results indicate that, in the universal composable security framework, the protocol can still achieve high key rates against coherent attacks under the condition of achievable block lengths.



قيم البحث

اقرأ أيضاً

We investigate the performance of Gaussianmodulated coherent-state QKD protocols in the presence of canonical attacks, which are collective Gaussian attacks resulting in Gaussian channels described by one of the possible canonical forms. We present a symptotic key rates and then we extend the results to the finite-size regime using a recently-developed toolbox for composable security.
We introduce a robust scheme for long-distance continuous-variable (CV) measurement-device-independent (MDI) quantum key distribution (QKD) in which we employ post-selection between distant parties communicating through the medium of an untrusted rel ay. We perform a security analysis that allows for general transmissivity and thermal noise variance of each link, in which we assume an eavesdropper performs a collective attack and controls the excess thermal noise in the channels. The introduction of post-selection enables the parties to sustain a secret key rate over distances exceeding those of existing CV MDI protocols. In the worst-case scenario in which the relay is positioned equidistant between them, we find that the parties may communicate securely over a range of 14 km in standard optical fiber. Our protocol helps to overcome the rate-distance limitations of previously proposed CV MDI protocols while maintaining many of their advantages.
Phase-randomized optical homodyne detection is a well-known technique for performing quantum state tomography. So far, it has been mainly considered a sophisticated tool for laboratory experiments but unsuitable for practical applications. In this wo rk, we change the perspective and employ this technique to set up a practical continuous-variable quantum random number generator. We exploit a phase-randomized local oscillator realized with a gain-switched laser to bound the min-entropy and extract true randomness from a completely uncharacterized input, potentially controlled by a malicious adversary. Our proof-of-principle implementation achieves an equivalent rate of 270 Mbit/s. In contrast to other source-device-independent quantum random number generators, the one presented herein does not require additional active optical components, thus representing a viable solution for future compact, modulator-free, certified generators of randomness.
Device-independent quantum key distribution (DIQKD) is the art of using untrusted devices to distribute secret keys in an insecure network. It thus represents the ultimate form of cryptography, offering not only information-theoretic security against channel attacks, but also against attacks exploiting implementation loopholes. In recent years, much progress has been made towards realising the first DIQKD experiments, but current proposals are just out of reach of todays loophole-free Bell experiments. Here, we significantly narrow the gap between the theory and practice of DIQKD with a simple variant of the original protocol based on the celebrated Clauser-Horne-Shimony-Holt (CHSH) Bell inequality. By using two randomly chosen key generating bases instead of one, we show that our protocol significantly improves over the original DIQKD protocol, enabling positive keys in the high noise regime for the first time. We also compute the finite-key security of the protocol for general attacks, showing that approximately 1E8 to 1E10 measurement rounds are needed to achieve positive rates using state-of-the-art experimental parameters. Our proposed DIQKD protocol thus represents a highly promising path towards the first realisation of DIQKD in practice.
127 - Lana Sheridan , Thinh Phuc Le , 2010
The work by Christandl, Konig and Renner [Phys. Rev. Lett. 102, 020504 (2009)] provides in particular the possibility of studying unconditional security in the finite-key regime for all discrete-variable protocols. We spell out this bound from their general formalism. Then we apply it to the study of a recently proposed protocol [Laing et al., Phys. Rev. A 82, 012304 (2010)]. This protocol is meaningful when the alignment of Alices and Bobs reference frames is not monitored and may vary with time. In this scenario, the notion of asymptotic key rate has hardly any operational meaning, because if one waits too long time, the average correlations are smeared out and no security can be inferred. Therefore, finite-key analysis is necessary to find the maximal achievable secret key rate and the corresponding optimal number of signals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا