ﻻ يوجد ملخص باللغة العربية
This paper studies the joint design of optimal convolutional codes (CCs) and CRC codes when serial list Viterbi algorithm (S-LVA) is employed in order to achieve the target frame error rate (FER). We first analyze the S-LVA performance with respect to SNR and list size, repsectively, and prove the convergence of the expected number of decoding attempts when SNR goes to the extreme. We then propose the coded channel capacity as the criterion to jointly design optimal CC-CRC pair and optimal list size and show that the optimal list size of S-LVA is always the cardinality of all possible CCs. With the maximum list size, we choose the design metric of optimal CC-CRC pair as the SNR gap to random coding union (RCU) bound and the optimal CC-CRC pair is the one that achieves a target SNR gap with the least complexity. Finally, we show that a weaker CC with a strong optimal CRC code could be as powerful as a strong CC with no CRC code.
This paper identifies convolutional codes (CCs) used in conjunction with a CC-specific cyclic redundancy check (CRC) code as a promising paradigm for short blocklength codes. The resulting CRC-CC concatenated code naturally permits the use of the ser
This work identifies information-theoretic quantities that are closely related to the required list size for successive cancellation list (SCL) decoding to implement maximum-likelihood decoding. It also provides an approximation for these quantities
A new class of folded subspace codes for noncoherent network coding is presented. The codes can correct insertions and deletions beyond the unique decoding radius for any code rate $Rin[0,1]$. An efficient interpolation-based decoding algorithm for t
As the first error correction codes provably achieving the symmetric capacity of binary-input discrete memory-less channels (B-DMCs), polar codes have been recently chosen by 3GPP for eMBB control channel. Among existing algorithms, CRC-aided success
Linearized Reed-Solomon (LRS) codes are sum-rank metric codes that fulfill the Singleton bound with equality. In the two extreme cases of the sum-rank metric, they coincide with Reed-Solomon codes (Hamming metric) and Gabidulin codes (rank metric). L