ﻻ يوجد ملخص باللغة العربية
We investigate theoretically the magnetization loss and electromagnetic coupling of twisted multi-filament superconducting (SC) tapes in a ramped magnetic field. Based on the two-dimensional reduced Faraday--Maxwell equation for a tape surface obtained with a thin-sheet approximation, we simulate numerically the power loss $P$ per unit length on twisted multi-filament tapes in the steady state. The current density profile clearly shows electromagnetic coupling between the SC filaments upon increasing the field sweep rate $beta$. Although the $beta$ dependence of $P/beta$ for twisted multi-filament SC tapes closely resembles that for filaments in an alternating field, we show that the mechanism for electromagnetic coupling in a ramped field differs from that in an alternating field. We also identify the conditions under which electromagnetic coupling is suppressed for the typical sweep rate of a magnet used for magnetic resonance imaging.
Magnetization loss on a twisted superconducting (SC) tape in a ramped magnetic field is theoretically investigated through the use of a power law for the electric field--current density characteristics and a sheet current approximation. First, the Ma
We investigate theoretically the dependence of magnetization loss of a helically wound superconducting tape on the round core radius $R$ and the helical conductor pitch in a ramped magnetic field. Using the thin-sheet approximation, we identify the t
Superconducting joints are essential for iron-based superconductors applications in future. In this study, a process for fabricating superconducting joints between Sr1-xKxFe2As2 (Sr-122) tapes is developed for the first time. The Ag sheath was peeled
The high upper critical field characteristic of the recently discovered iron-based superconducting chalcogenides opens the possibility of developing a new type of non-oxide high-field superconducting wires. In this work, we utilize a buffered metal t
Ag-sheathed CaKFe4As4 superconducting tapes have been fabricated via the ex-situ powder-in-tube method. Thermal and X-ray diffraction analyses suggest that the CaKFe4As4 phase is unstable at high temperatures. It decomposes into the CaAgAs phase whic