ﻻ يوجد ملخص باللغة العربية
Given a graph $G = (V,E)$ and a subset $T subseteq V$ of terminals, a emph{Steiner tree} of $G$ is a tree that spans $T$. In the vertex-weighted Steiner tree (VST) problem, each vertex is assigned a non-negative weight, and the goal is to compute a minimum weight Steiner tree of $G$. We study a natural generalization of the VST problem motivated by multi-level graph construction, the emph{vertex-weighted grade-of-service Steiner tree problem} (V-GSST), which can be stated as follows: given a graph $G$ and terminals $T$, where each terminal $v in T$ requires a facility of a minimum grade of service $R(v)in {1,2,ldotsell}$, compute a Steiner tree $G$ by installing facilities on a subset of vertices, such that any two vertices requiring a certain grade of service are connected by a path in $G$ with the minimum grade of service or better. Facilities of higher grade are more costly than facilities of lower grade. Multi-level variants such as this one can be useful in network design problems where vertices may require facilities of varying priority. While similar problems have been studied in the edge-weighted case, they have not been studied as well in the more general vertex-weighted case. We first describe a simple heuristic for the V-GSST problem whose approximation ratio depends on $ell$, the number of grades of service. We then generalize the greedy algorithm of [Klein & Ravi, 1995] to show that the V-GSST problem admits a $(2 ln |T|)$-approximation, where $T$ is the set of terminals requiring some facility. This result is surprising, as it shows that the (seemingly harder) multi-grade problem can be approximated as well as the VST problem, and that the approximation ratio does not depend on the number of grades of service.
In the Priority Steiner Tree (PST) problem, we are given an undirected graph $G=(V,E)$ with a source $s in V$ and terminals $T subseteq V setminus {s}$, where each terminal $v in T$ requires a nonnegative priority $P(v)$. The goal is to compute a min
We study the prize-collecting version of the Node-weighted Steiner Tree problem (NWPCST) restricted to planar graphs. We give a new primal-dual Lagrangian-multiplier-preserving (LMP) 3-approximation algorithm for planar NWPCST. We then show a ($2.88
We study the multi-level Steiner tree problem: a generalization of the Steiner tree problem in graphs where terminals $T$ require varying priority, level, or quality of service. In this problem, we seek to find a minimum cost tree containing edges of
Robust optimization is a widely studied area in operations research, where the algorithm takes as input a range of values and outputs a single solution that performs well for the entire range. Specifically, a robust algorithm aims to minimize regret,
The Steiner Tree problem is a classical problem in combinatorial optimization: the goal is to connect a set $T$ of terminals in a graph $G$ by a tree of minimum size. Karpinski and Zelikovsky (1996) studied the $delta$-dense version of {sc Steiner Tr