ﻻ يوجد ملخص باللغة العربية
We use spatially-sparse two, three and four dimensional convolutional autoencoder networks to model sparse structures in 2D space, 3D space, and 3+1=4 dimensional space-time. We evaluate the resulting latent spaces by testing their usefulness for downstream tasks. Applications are to handwriting recognition in 2D, segmentation for parts in 3D objects, segmentation for objects in 3D scenes, and body-part segmentation for 4D wire-frame models generated from motion capture data.
Unsupervised image clustering methods often introduce alternative objectives to indirectly train the model and are subject to faulty predictions and overconfident results. To overcome these challenges, the current research proposes an innovative mode
In this work we introduce Deforming Autoencoders, a generative model for images that disentangles shape from appearance in an unsupervised manner. As in the deformable template paradigm, shape is represented as a deformation between a canonical coord
With the increasing number of deep multi-wavelength galaxy surveys, the spectral energy distribution (SED) of galaxies has become an invaluable tool for studying the formation of their structures and their evolution. In this context, standard analysi
Datasets from single-molecule experiments often reflect a large variety of molecular behaviour. The exploration of such datasets can be challenging, especially if knowledge about the data is limited and a priori assumptions about expected data charac
This paper is about variable selection, clustering and estimation in an unsupervised high-dimensional setting. Our approach is based on fitting constrained Gaussian mixture models, where we learn the number of clusters $K$ and the set of relevant var