ترغب بنشر مسار تعليمي؟ اضغط هنا

Polar Decoding on Sparse Graphs with Deep Learning

97   0   0.0 ( 0 )
 نشر من قبل Chuan Zhang
 تاريخ النشر 2018
والبحث باللغة English
 تأليف Weihong Xu




اسأل ChatGPT حول البحث

In this paper, we present a sparse neural network decoder (SNND) of polar codes based on belief propagation (BP) and deep learning. At first, the conventional factor graph of polar BP decoding is converted to the bipartite Tanner graph similar to low-density parity-check (LDPC) codes. Then the Tanner graph is unfolded and translated into the graphical representation of deep neural network (DNN). The complex sum-product algorithm (SPA) is modified to min-sum (MS) approximation with low complexity. We dramatically reduce the number of weight by using single weight to parameterize the networks. Optimized by the training techniques of deep learning, proposed SNND achieves comparative decoding performance of SPA and obtains about $0.5$ dB gain over MS decoding on ($128,64$) and ($256,128$) codes. Moreover, $60 %$ complexity reduction is achieved and the decoding latency is significantly lower than the conventional polar BP.



قيم البحث

اقرأ أيضاً

59 - Huayi Zhou 2018
As the first error correction codes provably achieving the symmetric capacity of binary-input discrete memory-less channels (B-DMCs), polar codes have been recently chosen by 3GPP for eMBB control channel. Among existing algorithms, CRC-aided success ive cancellation list (CA-SCL) decoding is favorable due to its good performance, where CRC is placed at the end of the decoding and helps to eliminate the invalid candidates before final selection. However, the good performance is obtained with a complexity increase that is linear in list size $L$. In this paper, the tailored CRC-aided SCL (TCA-SCL) decoding is proposed to balance performance and complexity. Analysis on how to choose the proper CRC for a given segment is proposed with the help of emph{virtual transform} and emph{virtual length}. For further performance improvement, hybrid automatic repeat request (HARQ) scheme is incorporated. Numerical results have shown that, with the similar complexity as the state-of-the-art, the proposed TCA-SCL and HARQ-TCA-SCL schemes achieve $0.1$ dB and $0.25$ dB performance gain at frame error rate $textrm{FER}=10^{-2}$, respectively. Finally, an efficient TCA-SCL decoder is implemented with FPGA demonstrating its advantages over CA-SCL decoder.
61 - Songyan Xue , Yi Ma , Na Yi 2020
This paper aims to handle the joint transmitter and noncoherent receiver design for multiuser multiple-input multiple-output (MU-MIMO) systems through deep learning. Given the deep neural network (DNN) based noncoherent receiver, the novelty of this work mainly lies in the multiuser waveform design at the transmitter side. According to the signal format, the proposed deep learning solutions can be divided into two groups. One group is called pilot-aided waveform, where the information-bearing symbols are time-multiplexed with the pilot symbols. The other is called learning-based waveform, where the multiuser waveform is partially or even completely designed by deep learning algorithms. Specifically, if the information-bearing symbols are directly embedded in the waveform, it is called systematic waveform. Otherwise, it is called non-systematic waveform, where no artificial design is involved. Simulation results show that the pilot-aided waveform design outperforms the conventional zero forcing receiver with least squares (LS) channel estimation on small-size MU-MIMO systems. By exploiting the time-domain degrees of freedom (DoF), the learning-based waveform design further improves the detection performance by at least 5 dB at high signal-to-noise ratio (SNR) range. Moreover, it is found that the traditional weight initialization method might cause a training imbalance among different users in the learning-based waveform design. To tackle this issue, a novel weight initialization method is proposed which provides a balanced convergence performance with no complexity penalty.
Spectrum sharing among users is a fundamental problem in the management of any wireless network. In this paper, we discuss the problem of distributed spectrum collaboration without central management under general unknown channels. Since the cost of communication, coordination and control is rapidly increasing with the number of devices and the expanding bandwidth used there is an obvious need to develop distributed techniques for spectrum collaboration where no explicit signaling is used. In this paper, we combine game-theoretic insights with deep Q-learning to provide a novel asymptotically optimal solution to the spectrum collaboration problem. We propose a deterministic distributed deep reinforcement learning(D3RL) mechanism using a deep Q-network (DQN). It chooses the channels using the Q-values and the channel loads while limiting the options available to the user to a few channels with the highest Q-values and among those, it selects the least loaded channel. Using insights from both game theory and combinatorial optimization we show that this technique is asymptotically optimal for large overloaded networks. The selected channel and the outcome of the successful transmission are fed back into the learning of the deep Q-network to incorporate it into the learning of the Q-values. We also analyzed performance to understand the behavior of D3RL in differ
Massive multiple-input multiple-output can obtain more performance gain by exploiting the downlink channel state information (CSI) at the base station (BS). Therefore, studying CSI feedback with limited communication resources in frequency-division d uplexing systems is of great importance. Recently, deep learning (DL)-based CSI feedback has shown considerable potential. However, the existing DL-based explicit feedback schemes are difficult to deploy because current fifth-generation mobile communication protocols and systems are designed based on an implicit feedback mechanism. In this paper, we propose a DL-based implicit feedback architecture to inherit the low-overhead characteristic, which uses neural networks (NNs) to replace the precoding matrix indicator (PMI) encoding and decoding modules. By using environment information, the NNs can achieve a more refined mapping between the precoding matrix and the PMI compared with codebooks. The correlation between subbands is also used to further improve the feedback performance. Simulation results show that, for a single resource block (RB), the proposed architecture can save 25.0% and 40.0% of overhead compared with Type I codebook under two antenna configurations, respectively. For a wideband system with 52 RBs, overhead can be saved by 30.7% and 48.0% compared with Type II codebook when ignoring and considering extracting subband correlation, respectively.
In this paper we address the problem of selecting factor-graph permutations of polar codes under belief propagation (BP) decoding to significantly improve the error-correction performance of the code. In particular, we formalize the factor-graph perm utation selection as the multi-armed bandit problem in reinforcement learning and propose a decoder that acts like an online-learning agent that learns to select the good factor-graph permutations during the course of decoding. We use state-of-the-art algorithms for the multi-armed bandit problem and show that for a 5G polar codes of length 128 with 64 information bits, the proposed decoder has an error-correction performance gain of around 0.125 dB at the target frame error rate of 10^{-4}, when compared to the approach that randomly selects the factor-graph permutations.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا