ﻻ يوجد ملخص باللغة العربية
We use holographic methods to characterize the RG flow of quantum information in a Chern-Simons theory coupled to massive fermions. First, we use entanglement entropy and mutual information between strips to derive the dimension of the RG-driving operator and a monotonic c-function. We then display a scaling regime where, unlike in a CFT, the mutual information between strips changes non-monotonically with strip width, vanishing in both IR and UV but rising to a maximum at intermediate scales. The associated information transitions also contribute to non-monotonicity in the conditional mutual information which characterizes the independence of neighboring strips after conditioning on a third. Finally, we construct a measure of extensivity which tests to what extent information that region A shares with regions B and C is additive. In general, mutual information is super-extensive in holographic theories, and we might expect super-extensivity to be maximized in CFTs since they are scale-free. Surprisingly, our massive theory is more super-extensive than a CFT in a range of scales near the UV limit, although it is less super-extensive than a CFT at all lower scales. Our analysis requires the full ten-dimensional dual gravity background, and the extremal surfaces computing entanglement entropy explore all of these dimensions.
We study the behavior of quasinormal modes in a top-down holographic dual corresponding to a strongly coupled $mathcal{N} = 4$ super Yang-Mills plasma charged under a $U(1)$ subgroup of the global $SU(4)$ R-symmetry. In particular, we analyze the spe
In this paper we study the Bremsstrahlung functions for the 1/6 BPS and the 1/2 BPS Wilson lines in ABJM theory. First we use a superconformal defect approach to prove a conjectured relation between the Bremsstrahlung functions associated to the geom
The formalism of Holographic Space-time (HST) is a translation of the principles of Lorentzian geometry into the language of quantum information. Intervals along time-like trajectories, and their associated causal diamonds, completely characterize a
In quantum information theory, Fisher Information is a natural metric on the space of perturbations to a density matrix, defined by calculating the relative entropy with the unperturbed state at quadratic order in perturbations. In gravitational phys
We review an explicit regularization of the AdS$_2$/CFT$_1$ correspondence, that preserves all isometries of bulk and boundary degrees of freedom. This scheme is useful to characterize the space of the unitary evolution operators that describe the dy