ترغب بنشر مسار تعليمي؟ اضغط هنا

Ring dynamics around non-axisymmetric bodies with application to Chariklo and Haumea

162   0   0.0 ( 0 )
 نشر من قبل Bruno Sicardy Prof.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dense and narrow rings have been discovered recently around the small Centaur object Chariklo and the dwarf planet Haumea, while being suspected around the Centaur Chiron. They are the first rings observed in the Solar System elsewhere than around giant planets. Contrarily to the latters, gravitational fields of small bodies may exhibit large non-axisymmetric terms that create strong resonances between the spin of the object and the mean motion of rings particles. Here we show that modest topographic features or elongations of Chariklo and Haumea explain why their rings are relatively far away from the central body, when scaled to those of the giant planets. Lindblad-type resonances actually clear on decadal time-scales an initial collisional disk that straddles the corotation resonance (where the particles mean motion matches the spin rate of the body). The disk material inside the corotation radius migrates onto the body, while the material outside the corotation radius is pushed outside the 1/2 resonance, where the particles complete one revolution while the body completes two rotations. Consequently, the existence of rings around non-axisymmetric bodies requires that the 1/2 resonance resides inside the Roche limit of the body, favoring fast rotators for being surrounded by rings.



قيم البحث

اقرأ أيضاً

Until now, rings have been detected in the Solar System exclusively around the four giant planets. Here we report the discovery of the first minor-body ring system around the Centaur object (10199) Chariklo, a body with equivalent radius 124$pm$9 km. A multi-chord stellar occultation revealed the presence of two dense rings around Chariklo, with widths of about 7 km and 3 km, optical depths 0.4 and 0.06, and orbital radii 391 and 405 km, respectively. The present orientation of the ring is consistent with an edge-on geometry in 2008, thus providing a simple explanation for the dimming of Chariklos system between 1997 and 2008, and for the gradual disappearance of ice and other absorption features in its spectrum over the same period. This implies that the rings are partially composed of water ice. These rings may be the remnants of a debris disk, which were possibly confined by embedded kilometre-sized satellites.
In this work we aim to study if the variability in the absolute magnitude of Chariklo and the temporal variation of the spectral ice feature, even its disappearance in 2007, can be explained by an icy ring system whose aspect angle changes with time. We modeled the light reflected by a system as the one described above to explain the variations on the absolute magnitude of Chariklo and its rings. Using X-Shooter at VLT we obtained a new reflectance spectra, here we compared this new set of data with the ones available in the literature. We showed how the water ice feature is visible in 2013 in accordance with the ring configuration, which had an opening angle of nearly 34$^o$ in 2013. Finally we also used models of the scattering of light to fit the visible and near-infrared spectra showing different characteristic to obtain information on the composition of Chariklo and its rings. {We showed that past absolute photometry of Chariklo from the literature and new photometric data that we obtained in 2013 can be explained by a ring of particles whose opening angle changes as a function of time. We used the two possible pole solutions for the ring system and found that only one of them, $alpha$=151.30$pm0.5$, $delta=41.48pm0.2$ $^o$ ($lambda=137.9pm0.5$, $beta=27.7pm0.2$ $^o$) provides the right variation of the aspect angle with time to explain the photometry, whereas the other possible pole solution fails to explain the photometry. From spectral modeling, using the result on the pole solution, we derived the composition of Chariklo surface and of that of the rings. Chariklo surface is composed by nearly 60% of amorphous carbon, 30% of silicates and 10% of organics, no water ice was found on the surface. Whereas the ring contains 20% of water ice, 40-70% of silicates and 10-30% of tholins and small quantities of amorphous carbon.
The recently discovered ring around the dwarf planet (136108) Haumea is located near the 1:3 resonance between the orbital motion of the ring particles and the spin of Haumea. In the current work is studied the dynamics of individual particles in the region where is located the ring. Using the Poincare Surface of Section technique, the islands of stability associated with the 1:3 resonance are identified and studied. Along all its existence this resonance showed to be doubled, producing pairs of periodic and quasi-periodic orbits. The fact of being doubled introduces a separatrix, which generates a chaotic layer that significantly reduces the size of the stable regions of the 1:3 resonance. The results also show that there is a minimum equivalent eccentricity ($e_{1:3}$) for the existence of such resonance. This value seems to be too high to keep a particle within the borders of the ring. On the other hand, the Poincare Surface of Sections show the existence of much larger stable regions, but associated with a family of first kind periodic orbits. They exist with equivalent eccentricity values lower than $e_{1:3}$, and covering a large radial distance, which encompasses the region of the Haumeas ring. Therefore, this analysis suggests the Haumeas ring is in a stable region associated with a first kind periodic orbit instead of the 1:3 resonance.
Haumea, a rapidly rotating elongated dwarf planet (~ 1500 km in diameter), has two satellites and is associated with a family of several smaller Kuiper Belt objects (KBOs) in similar orbits. All members of the Haumea system share a water ice spectral feature that is distinct from all other KBOs. The relative velocities between the Haumea family members are too small to have formed by catastrophic disruption of a large precursor body, which is the process that formed families around much smaller asteroids in the Main Belt. Here we show that all of the unusual characteristics of the Haumea system are explained by a novel type of giant collision: a graze-and-merge impact between two comparably sized bodies. The grazing encounter imparted the high angular momentum that spun off fragments from the icy crust of the elongated merged body. The fragments became satellites and family members. Giant collision outcomes are extremely sensitive to the impact parameters. Compared to the Main Belt, the largest bodies in the Kuiper Belt are more massive and experience slower velocity collisions; hence, outcomes of giant collisions are dramatically different between the inner and outer solar system. The dwarf planets in the Kuiper Belt record an unexpectedly large number of giant collisions, requiring a special dynamical event at the end of solar system formation.
Among the four known transneptunian dwarf planets, Haumea is an exotic, very elongated, and fast rotating body. In contrast to the other dwarf planets, its size, shape, albedo, and density are not well constrained. Here we report results of a multi-c hord stellar occultation, observed on 2017 January 21. Secondary events observed around the main body are consistent with the presence of a ring of opacity 0.5, width 70 km, and radius 2,287$_{-45}^{+75}$ km. The Centaur Chariklo was the first body other than a giant planet to show a ring system and the Centaur Chiron was later found to possess something similar to Chariklos rings. Haumea is the first body outside the Centaur population with a ring. The ring is coplanar with both Haumeas equator and the orbit of its satellite Hiiaka. Its radius places close to the 3:1 mean motion resonance with Haumeas spin period. The occultation by the main body provides an instantaneous elliptical limb with axes 1,704 $pm$ 4 km x 1,138 $pm$ 26 km. Combined with rotational light-curves, it constrains Haumeas 3D orientation and its triaxial shape, which is inconsistent with a homogeneous body in hydrostatic equilibrium. Haumeas largest axis is at least 2,322 $pm$ 60 km, larger than thought before. This implies an upper limit of 1,885 $pm$ 80 kg m$^{-3}$ for Haumeas density, smaller and less puzzling than previous estimations, and a geometric albedo of 0.51 $pm$ 0.02, also smaller than previous estimations. No global N$_2$ or CH$_4$ atmosphere with pressures larger than 15 and 50 nbar (3-$sigma$ limits), respectively, is detected.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا