ترغب بنشر مسار تعليمي؟ اضغط هنا

3D Aeronomy Modeling of Close-in Exoplanets

263   0   0.0 ( 0 )
 نشر من قبل Ildar Shaikhislamov Dr
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a 3D fully selfconsistent multi-fluid hydrodynamic aeronomy model to study the structure of a hydrogen dominated expanding upper atmosphere around the hot Jupiter HD 209458b and the warm Neptune GJ 436b. In comparison to previous studies with 1D and 2D models, the present work finds such 3D features as zonal flows in upper atmosphere reaching up to 1 km/s, the tilting of the planetary outflow by Coriolis force by up to 45 degrees and its compression around equatorial plane by tidal forces. We also investigated in details the influence of Helium (He) on the structure of the thermosphere. It is found that by decrease of the barometric scale-height, the He presence in the atmosphere strongly affects the H2 dissociation front and the temperature maximum.



قيم البحث

اقرأ أيضاً

The lower limit to the distribution of orbital periods P for the current population of close-in exoplanets shows a distinctive discontinuity located at approximately one Jovian mass. Most smaller planets have orbital periods longer than P~2.5 days, w hile higher masses are found down to P~1 day. We analyze whether this observed mass-period distribution could be explained in terms of the combined effects of stellar tides and the interactions of planets with an inner cavity in the gaseous disk. We performed a series of hydrodynamical simulations of the evolution of single-planet systems in a gaseous disk with an inner cavity mimicking the inner boundary of the disk. The subsequent tidal evolution is analyzed assuming that orbital eccentricities are small and stellar tides are dominant. We find that most of the close-in exoplanet population is consistent with an inner edge of the protoplanetary disk being located at approximately P>2 days for solar-type stars, in addition to orbital decay having been caused by stellar tides with a specific tidal parameter on the order of Q*=10^7. The data is broadly consistent with planets more massive than one Jupiter mass undergoing type II migration, crossing the gap, and finally halting at the interior 2/1 mean-motion resonance with the disk edge. Smaller planets do not open a gap in the disk and remain trapped in the cavity edge. CoRoT-7b appears detached from the remaining exoplanet population, apparently requiring additional evolutionary effects to explain its current mass and semimajor axis.
The radius of an exoplanet may be affected by various factors, including irradiation, planet mass and heavy element content. A significant number of transiting exoplanets have now been discovered for which the mass, radius, semi-major axis, host star metallicity and stellar effective temperature are known. We use multivariate regression models to determine the dependence of planetary radius on planetary equilibrium temperature T_eq, planetary mass M_p, stellar metallicity [Fe/H], orbital semi-major axis a, and tidal heating rate H_tidal, for 119 transiting planets in three distinct mass regimes. We determine that heating leads to larger planet radii, as expected, increasing mass leads to increased or decreased radii of low-mass (<0.5R_J) and high-mass (>2.0R_J) planets, respectively (with no mass effect on Jupiter-mass planets), and increased host-star metallicity leads to smaller planetary radii, indicating a relationship between host-star metallicity and planet heavy element content. For Saturn-mass planets, a good fit to the radii may be obtained from log(R_p/R_J)=-0.077+0.450 log(M_p/M_J)-0.314[Fe/H]+0.671 log(a/AU)+0.398 log(T_eq/K). The radii of Jupiter-mass planets may be fit by log(R_p/R_J)=-2.217+0.856 log(T_eq/K)+0.291 log(a/AU). High-mass planets radii are best fit by log(R_p/R_J)=-1.067+0.380 log(T_eq/K)-0.093 log(M_p/M_J)-0.057[Fe/H]+0.019 log(H_tidal/1x10^{20}). These equations produce a very good fit to the observed radii, with a mean absolute difference between fitted and observed radius of 0.11R_J. A clear distinction is seen between the core-dominated Saturn-mass (0.1-0.5M_J) planets, whose radii are determined almost exclusively by their mass and heavy element content, and the gaseous envelope-dominated Jupiter-mass (0.5-2.0M_J) planets, whose radii increase strongly with irradiating flux, partially offset by a power-law dependence on orbital separation.
Extrasolar satellites are generally too small to be detected by nominal searches. By analogy to the most active body in the Solar System, Io, we describe how sodium (Na I) and potassium (K I) $textit{gas}$ could be a signature of the geological activ ity venting from an otherwise hidden exo-Io. Analyzing $sim$ a dozen close-in gas giants hosting robust alkaline detections, we show that an Io-sized satellite can be stable against orbital decay below a planetary tidal $mathcal{Q}_p lesssim 10^{11}$. This tidal energy is focused into the satellite driving a $sim 10^{5 pm 2}$ higher mass loss rate than Ios supply to Jupiters Na exosphere, based on simple atmospheric loss estimates. The remarkable consequence is that several exo-Io column densities are on average $textit{more than sufficient}$ to provide the $sim$ 10$^{10 pm 1}$ Na cm$^{-2}$ required by the equivalent width of exoplanet transmission spectra. Furthermore, the benchmark observations of both Jupiters extended ($sim 1000$ R$_J$) Na exosphere and Jupiters atmosphere in transmission spectroscopy yield similar Na column densities that are purely exogenic in nature. As a proof of concept, we fit the high-altitude Na at WASP 49-b with an ionization-limited cloud similar to the observed Na profile about Io. Moving forward, we strongly encourage time-dependent ingress and egress monitoring along with spectroscopic searches for other volcanic volatiles.
A large fraction of known terrestrial-size exoplanets located in the Habitable Zone of M-dwarfs are expected to be tidally-locked. Numerous efforts have been conducted to study the climate of such planets, using in particular 3-D Global Climate Model s (GCM). One of the biggest challenges in simulating such an extreme environment is to properly represent the effects of sub-grid convection. Most GCMs use either a simplistic convective-adjustment parametrization or sophisticated (e.g., mass flux scheme) Earth-tuned parametrizations. One way to improve the representation of convection is to study convection using Convection Resolving numerical Models (CRMs), with an fine spatial resolution . In this study, we developed a CRM coupling the non-hydrostatic dynamical core WRF with the radiative transfer and cloud/precipitation models of the LMD-Generic climate model to study convection and clouds on tidally-locked planets, with a focus on Proxima b. Simulations were performed for a set of 3 surface temperatures (corresponding to three different incident fluxes) and 2 rotation rates, assuming an Earth-like atmosphere. The main result of our study is that while we recover the prediction of GCMs that (low-altitude) cloud albedo increases with increasing stellar flux, the cloud feedback is much weaker due to transient aggregation of convection leading to low partial cloud cover.
Despite the existence of co-orbital bodies in the solar system, and the prediction of the formation of co-orbital planets by planetary system formation models, no co-orbital exoplanets (also called trojans) have been detected thus far. Here we study the signature of co-orbital exoplanets in transit surveys when two planet candidates in the system orbit the star with similar periods. Such pair of candidates could be discarded as false positives because they are not Hill-stable. However, horseshoe or long libration period tadpole co-orbital configurations can explain such period similarity. This degeneracy can be solved by considering the Transit Timing Variations (TTVs) of each planet. We then focus on the three planet candidates system TOI-178: the two outer candidates of that system have similar orbital period and had an angular separation near $pi/3$ during the TESS observation of sector 2. Based on the announced orbits, the long-term stability of the system requires the two close-period planets to be co-orbitals. Our independent detrending and transit search recover and slightly favour the three orbits close to a 3:2:2 resonant chain found by the TESS pipeline, although we cannot exclude an alias that would put the system close to a 4:3:2 configuration. We then analyse in more detail the co-orbital scenario. We show that despite the influence of an inner planet just outside the 2:3 mean-motion resonance, this potential co-orbital system can be stable on the Giga-year time-scale for a variety of planetary masses, either on a trojan or a horseshoe orbit. We predict that large TTVs should arise in such configuration with a period of several hundred days. We then show how the mass of each planet can be retrieved from these TTVs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا