ترغب بنشر مسار تعليمي؟ اضغط هنا

LoTSS/HETDEX: Optical quasars I. Low-frequency radio properties of optically selected quasars

327   0   0.0 ( 0 )
 نشر من قبل Gulay Gurkan Uygun
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The radio-loud/radio-quiet (RL/RQ) dichotomy in quasars is still an open question. Although it is thought that accretion onto supermassive black holes in the centre the host galaxies of quasars is responsible for some radio continuum emission, there is still a debate as to whether star formation or active galactic nuclei (AGN) activity dominate the radio continuum luminosity. To date, radio emission in quasars has been investigated almost exclusively using high-frequency observations in which the Doppler boosting might have an important effect on the measured radio luminosity, whereas extended structures, best observed at low radio frequencies, are not affected by the Doppler enhancement. We used a sample of quasars selected by their optical spectra in conjunction with sensitive and high-resolution low-frequency radio data provided by the LOw Frequency ARray (LOFAR) as part of the LOFAR Two-Metre Sky Survey (LoTSS) to investigate their radio properties using the radio loudness parameter ($mathcal{R} = frac{L_{mathrm{144-MHz}}}{L_{mathrm{i,band}}}$). The examination of the radio continuum emission and RL/RQ dichotomy in quasars exhibits that quasars show a wide continuum of radio properties (i.e. no clear bimodality in the distribution of $mathcal{R}$). Radio continuum emission at low frequencies in low-luminosity quasars is consistent with being dominated by star formation. We see a significant albeit weak dependency of $mathcal{R}$ on the source nuclear parameters. For the first time, we are able to resolve radio morphologies of a considerable number of quasars. All these crucial results highlight the impact of the deep and high-resolution low-frequency radio surveys that foreshadow the compelling science cases for the Square Kilometre Array (SKA).



قيم البحث

اقرأ أيضاً

A sample of 103 quasars from the Large Bright Quasar Survey (LBQS) has been observed with the VLA at 8.4 GHz to study the evolution of the radio luminosity distribution and its dependence on absolute magnitude. Radio data from pointed observations ar e now available for 359 of the 1055 LBQS quasars. The radio-loud fraction is constant at ~10% over the absolute magnitude range -28 <= MB <= -23, and it rises to ~20% (log R > 1) or ~35% (log L > 25) at the brightest absolute magnitudes in the sample. This nearly flat distribution differs markedly from those of the optically selected Palomar-Green (PG) Bright Quasar Survey and the X-ray selected Extended Medium Sensitivity Survey (EMSS), both of which have lower radio-loud fractions for absolute magnitudes fainter than MB = -24 and higher fractions at brighter magnitudes. The reason for the high radio-loud fraction at bright absolute magnitudes in the PG, compared to the LBQS and other optically selected quasar surveys, is unknown. The trend of increasing radio-loud fraction with absolute magnitude in the EMSS is due at least in part to a correlation between X-ray and radio luminosity. Combining the LBQS data with radio studies of high-redshift quasars leads to the conclusion that the radio-loud fraction in optically selected quasars does not appear to evolve significantly, aside from a modest increase at z ~1, from z = 0.2 to redshifts approaching 5, a result that is contrary to previous studies which found a decrease in radio-loud fraction with increasing redshift by comparing the low-z fraction in the PG to higher redshift samples.
76 - Silpa S. 2020
We present the results from 685 MHz observations with the upgraded Giant Metrewave Radio Telescope (uGMRT) of 22 quasars belonging to the Palomar-Green (PG) quasar sample. Only four sources reveal extended radio structures on $sim$10-30 kpc scales, w hile the rest are largely a combination of a radio core unresolved at the uGMRT resolution of $sim$3-5 arcsec, surrounded by diffuse emission on few kpc to $sim$10 kpc scales. A few sources reveal signatures of barely resolved jets and lobes in their spectral index images that are created using the uGMRT 685 MHz data and similar resolution GHz-frequency data from the Very Large Array. On the basis of their position on the radio-IR correlation as well as the spectral index images, we find that the radio emission in the two radio-loud (RL) quasars and nearly one-third of the radio-quiet (RQ) quasars is active galactic nucleus (AGN) dominated whereas the remaining sources appear to have significant contributions from stellar-related processes along with the AGN. While the two RL sources exhibit inverted spectral index in their cores, the RQ sources exhibit a range of spectral indices varying from flat to steep ($-0.1gtrsimalpha_{R}gtrsim-1.1$) indicating the presence of unresolved jets/lobes or winds. Except for a significant correlation between the 685~MHz radio luminosity and the Eddington ratio, we do not find strong correlations between other 685 MHz radio properties and black hole (BH) properties in the RQ PG sources. This lack of correlations could be explained by the contribution of stellar-related emission, or radio emission from previous AGN activity episodes which may not be related to the current BH activity state.
With close pairs of quasars at different redshifts, a background quasar sightline can be used to study a foreground quasars environment in absorption. We search 149 moderate resolution background quasar spectra, from Gemini, Keck, the MMT, and the SD SS to survey Lyman Limit Systems (LLSs) and Damped Ly-alpha systems (DLAs) in the vicinity of 1.8 < z < 4.0 luminous foreground quasars. A sample of 27 new quasar-absorber pairs is uncovered with column densities, 17.2 < log (N_HI/cm^2) < 20.9, and transverse (proper) distances of 22 kpc/h < R < 1.7 Mpc/h, from the foreground quasars. If they emit isotropically, the implied ionizing photon fluxes are a factor of ~ 5-8000 times larger than the ambient extragalactic UV background over this range of distances. The observed probability of intercepting an absorber is very high for small separations: six out of eight projected sightlines with transverse separations R < 150 kpc/h have an absorber coincident with the foreground quasar, of which four have log N_HI > 10^19. The covering factor of log N_HI > 10^19 absorbers is thus ~ 50 % (4/8) on these small scales, whereas < 2% would have been expected at random. There are many cosmological applications of these new sightlines: they provide laboratories for studying fluorescent Ly-alpha recombination radiation from LLSs, constrain the environments, emission geometry, and radiative histories of quasars, and shed light on the physical nature of LLSs and DLAs.
Double-double radio galaxies (DDRGs) represent a short but unique phase in the life-cycle of some of the most powerful radio-loud active galactic nuclei (RLAGN). These galaxies display large-scale remnant radio plasma in the intergalactic medium left behind by a past episode of active galactic nuclei (AGN) activity, and meanwhile, the radio jets have restarted in a new episode. The knowledge of what causes the jets to switch off and restart is crucial to our understanding of galaxy evolution, while it is important to know if DDRGs form a host galaxy dichotomy relative to RLAGN. We utilised the LOFAR Two-Metre Sky Survey DR1, using a visual identification method to compile a sample of morphologically selected candidate DDRGs, showing two pairs of radio lobes. To confirm the restarted nature in each of the candidate sources, we obtained follow-up observations with the VLA at higher resolution to observe the inner lobes or restarted jets, the confirmation of which created a robust sample of 33 DDRGs. We created a comparison sample of 777 RLAGN from the DR1 catalogue, and compared the optical and infrared magnitudes and colours of their host galaxies. We find that there is no statistically significant difference in the brightness of the host galaxies between double-doubles and single-cycle RLAGN. The DDRG and RLAGN samples also have similar distributions in WISE mid-infrared colours, indicating similar ages of stellar populations and dust levels in the hosts of DDRGs. We conclude that DDRGs and normal RLAGN are hosted by galaxies of the same type, and that DDRG activity is simply a normal part of the life cycle of RLAGN. Restarted jets, particularly for the class of low-excitation radio galaxies, rather than being a product of a particular event in the life of a host galaxy, must instead be caused by smaller scale changes, such as in the accretion system surrounding the black hole.
We analyze the optical properties of Radio-Loud quasars along the Main Sequence (MS) of quasars. A sample of 355 quasars selected on the basis of radio detection was obtained by cross-matching the FIRST survey at 20cm and the SDSS DR12 spectroscopic survey. We consider the nature of powerful emission at the high-FeII end of the MS. At variance with the classical radio-loud sources which are located in the Population B domain of the MS optical plane, we found evidence indicating a thermal origin of the radio emission of the highly accreting quasars of Population A.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا