ﻻ يوجد ملخص باللغة العربية
In bipartite matching problems, vertices on one side of a bipartite graph are paired with those on the other. In its online variant, one side of the graph is available offline, while the vertices on the other side arrive online. When a vertex arrives, an irrevocable and immediate decision should be made by the algorithm; either match it to an available vertex or drop it. Examples of such problems include matching workers to firms, advertisers to keywords, organs to patients, and so on. Much of the literature focuses on maximizing the total relevance---modeled via total weight---of the matching. However, in many real-world problems, it is also important to consider contributions of diversity: hiring a diverse pool of candidates, displaying a relevant but diverse set of ads, and so on. In this paper, we propose the Online Submodular Bipartite Matching (osbm) problem, where the goal is to maximize a submodular function $f$ over the set of matched edges. This objective is general enough to capture the notion of both diversity (emph{e.g.,} a weighted coverage function) and relevance (emph{e.g.,} the traditional linear function)---as well as many other natural objective functions occurring in practice (emph{e.g.,} limited total budget in advertising settings). We propose novel algorithms that have provable guarantees and are essentially optimal when restricted to various special cases. We also run experiments on real-world and synthetic datasets to validate our algorithms.
Over three decades ago, Karp, Vazirani and Vazirani (STOC90) introduced the online bipartite matching problem. They observed that deterministic algorithms competitive ratio for this problem is no greater than $1/2$, and proved that randomized algorit
Online bipartite matching and its variants are among the most fundamental problems in the online algorithms literature. Karp, Vazirani, and Vazirani (STOC 1990) introduced an elegant algorithm for the unweighted problem that achieves an optimal compe
The rich literature on online Bayesian selection problems has long focused on so-called prophet inequalities, which compare the gain of an online algorithm to that of a prophet who knows the future. An equally-natural, though significantly less well-
We study the online discrepancy minimization problem for vectors in $mathbb{R}^d$ in the oblivious setting where an adversary is allowed fix the vectors $x_1, x_2, ldots, x_n$ in arbitrary order ahead of time. We give an algorithm that maintains $O(s
We introduce a weighted version of the ranking algorithm by Karp et al. (STOC 1990), and prove a competitive ratio of 0.6534 for the vertex-weighted online bipartite matching problem when online vertices arrive in random order. Our result shows that