ﻻ يوجد ملخص باللغة العربية
We demonstrate a new design principle for unidirectionally invisible non-Hermitian structures that are not only invisible for one specific wavelength but rather for a broad frequency range. Our idea is based on the concept of constant-intensity waves, which can propagate even through highly disordered media without back-scattering or intensity variations. Contrary to already existing invisibility studies, our new design principle requires neither a specific symmetry (like $mathcal{PT}$-symmetry) nor periodicity, and can thus be applied in a much wider context. This generality combined with broadband frequency stability allows a pulse to propagate through a disordered medium as if the medium was entirely uniform.
Recent studies of disorder or non-Hermiticity induced topological insulators inject new ingredients for engineering topological matter. Here we consider the effect of purely non-Hermitian disorders, a combination of these two ingredients, in a 1D chi
A fundamental manifestation of wave scattering in a disordered medium is the highly complex intensity pattern the waves acquire due to multi-path interference. Here we show that these intensity variations can be entirely suppressed by adding disorder
The interplay of fluctuations, ergodicity, and disorder in many-body interacting systems has been striking attention for half a century, pivoted on two celebrated phenomena: Anderson localization predicted in disordered media, and Fermi-Pasta-Ulam-Ts
Electromagnetic metasurfaces enable the advanced control of surface-wave propagation by spatially tailoring the local surface reactance. Interestingly, tailoring the surface resistance distribution in space provides new, largely unexplored degrees of
A fundamental insight in the theory of diffusive random walks is that the mean length of trajectories traversing a finite open system is independent of the details of the diffusion process. Instead, the mean trajectory length depends only on the syst