ترغب بنشر مسار تعليمي؟ اضغط هنا

Benchmarking Gate Fidelities in a Si/SiGe Two-Qubit Device

97   0   0.0 ( 0 )
 نشر من قبل Xiao Xue
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the first complete characterization of single-qubit and two-qubit gate fidelities in silicon-based spin qubits, including cross-talk and error correlations between the two qubits. To do so, we use a combination of standard randomized benchmarking and a recently introduced method called character randomized benchmarking, which allows for more reliable estimates of the two-qubit fidelity in this system. Interestingly, with character randomized benchmarking, the two-qubit CPhase gate fidelity can be obtained by studying the additional decay induced by interleaving the CPhase gate in a reference sequence of single-qubit gates only. This work sets the stage for further improvements in all the relevant gate fidelities in silicon spin qubits beyond the error threshold for fault-tolerant quantum computation.



قيم البحث

اقرأ أيضاً

Quantum computation requires qubits that satisfy often-conflicting criteria, including scalable control and long-lasting coherence. One approach to creating a suitable qubit is to operate in an encoded subspace of several physical qubits. Though such encoded qubits may be particularly susceptible to leakage out of their computational subspace, they can be insensitive to certain noise processes and can also allow logical control with a single type of entangling interaction while maintaining favorable features of the underlying physical system. Here we demonstrate a qubit encoded in a subsystem of three coupled electron spins confined in gated, isotopically enhanced silicon quantum dots. Using a modified blind randomized benchmarking protocol that determines both computational and leakage errors, we show that unitary operations have an average total error of 0.35%, with 0.17% of that coming from leakage driven by interactions with substrate nuclear spins. This demonstration utilizes only the voltage-controlled exchange interaction for qubit manipulation and highlights the operational benefits of encoded subsystems, heralding the realization of high-quality encoded multi-qubit operations.
Fast operations, an easily tunable Hamiltonian, and a straightforward two-qubit interaction make charge qubits a useful tool for benchmarking device performance and exploring two-qubit dynamics. Here, we tune a linear chain of four Si/SiGe quantum do ts to host two double dot charge qubits. Using the capacitance between the double dots to mediate a strong two-qubit interaction, we simultaneously drive coherent transitions to generate correlations between the qubits. We then sequentially pulse the qubits to drive one qubit conditionally on the state of the other. We find that a conditional $pi$-rotation can be driven in just 74 ps with a modest fidelity demonstrating the possibility of two-qubit operations with a 13.5 GHz clockspeed.
We study spatial noise correlations in a Si/SiGe two-qubit device with integrated micromagnets. Our method relies on the concept of decoherence-free subspaces, whereby we measure the coherence time for two different Bell states, designed to be sensit ive only to either correlated or anti-correlated noise respectively. From these measurements, we find weak correlations in low-frequency noise acting on the two qubits, while no correlations could be detected in high-frequency noise. A theoretical model and numerical simulations give further insight into the additive effect of multiple independent (anti-)correlated noise sources with an asymmetric effect on the two qubits. Such a scenario is plausible given the data and our understanding of the physics of this system. This work is highly relevant for the design of optimized quantum error correction codes for spin qubits in quantum dot arrays, as well as for optimizing the design of future quantum dot arrays.
We implement a technique for measuring the singlet-triplet energy splitting responsible for spin-to-charge conversion in semiconductor quantum dots. This method, which requires fast, single-shot charge measurement, reliably extracts an energy in the limits of both large and small splittings. We perform this technique on an undoped, accumulation-mode Si/SiGe triple-quantum dot and find that the measured splitting varies smoothly as a function of confinement gate biases. Not only does this demonstration prove the value of having an $in~situ$ excited-state measurement technique as part of a standard tune-up procedure, it also suggests that in typical Si/SiGe quantum dot devices, spin-blockade can be limited by lateral orbital excitation energy rather than valley splitting.
Electron spins in Si are an attractive platform for quantum computation, backed with their scalability and fast, high-fidelity quantum logic gates. Despite the importance of two-dimensional integration with efficient connectivity between qubits for m edium- to large-scale quantum computation, however, a practical device design that guarantees qubit addressability is yet to be seen. Here, we propose a practical 3 x 3 quantum dot device design and a larger-scale design as a longer-term target. The design goal is to realize qubit connectivity to the four nearest neighbors while ensuring addressability. We show that a 3 x 3 quantum dot array can execute four-qubit Grovers algorithm more efficiently than the one-dimensional counterpart. To scale up the two-dimensional array beyond 3 x 3, we propose a novel structure with ferromagnetic gate electrodes. Our results showcase the possibility of medium-sized quantum processors in Si with fast quantum logic gates and long coherence times.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا