We present a comparative study of several algorithms for an in-plane random walk with a variable step. The goal is to check the efficiency of the algorithm in the case where the random walk terminates at some boundary. We recently found that a finite step of the random walk produces a bias in the hitting probability and this bias vanishes in the limit of an infinitesimal step. Therefore, it is important to know how a change in the step size of the random walk influences the performance of simulations. We propose an algorithm with the most effective procedure for the step-length-change protocol.