ﻻ يوجد ملخص باللغة العربية
Radio observations of cool stellar systems provide unique information on their magnetic fields, high-energy processes, and chemistry. Buoyed by powerful new instruments (e.g. ALMA, JVLA, LOFAR), advances in related fields (e.g., the Gaia astrometric revolution), and above all a renewed interest in the relevant stellar astrophysics, stellar radio astronomy is experiencing a renaissance. In this splinter session, participants took stock of the present state of stellar radio astronomy to chart a course for the fields future.
Cool, evolved stars are the main source of chemical enrichment of the interstellar medium (ISM), and understanding their mass loss and structure offers a unique opportunity to study the cycle of matter in the Universe. Pulsation, convection, and othe
The ARGO-YBJ experiment has been in stable data taking for 5 years at the YangBaJing Cosmic Ray Observatory (Tibet, P.R. China, 4300 m a.s.l., 606 g/cm$^2$). With a duty-cycle greater than 86% the detector collected about 5$times $10$^{11}$ events in
The standard $Lambda$ Cold Dark Matter cosmological model provides an amazing description of a wide range of astrophysical and astronomical data. However, there are a few big open questions, that make the standard model look like a first-order approx
Over the past 20 years, KASCADE and its extension KASCADE-Grande were dedicated to measure high-energy cosmic rays with primary energies of 100 TeV to 1 EeV. The data accumulation was fully completed and all experimental components were dismantled, t
Over the past decade, research in resolved stellar populations has made great strides in exploring the nature of dark matter, in unraveling the star formation, chemical enrichment, and dynamical histories of the Milky Way and nearby galaxies, and in