ترغب بنشر مسار تعليمي؟ اضغط هنا

The effect of microscopic scattering on the nonlinear transmission of terahertz fields through monolayer graphene

241   0   0.0 ( 0 )
 نشر من قبل Lukas Helt
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the nonlinear terahertz response of n-doped monolayer graphene at room temperature using a microscopic theory of carrier dynamics. Our tight-binding model treats the carrier-field interaction in the length gauge, includes phonon as well as short-range neutral-impurity scattering, and fully accounts for the intrinsic nonlinear response of graphene near the Dirac point. Treating each interaction microscopically allows us to separate contributions from current clipping, phonon creation, and elastic impurity scattering. Although neutral impurity scattering and phonon scattering are both highly energy-dependent, we find that they impact conduction-band electron dynamics very differently, and that together they can help explain experimental results concerning field-dependent terahertz transmission through graphene.



قيم البحث

اقرأ أيضاً

The Raman scattering spectra (RS) of two series of monolayer graphene samples irradiated with various doses of C$^{+}$ and Xe$^{+}$ ions were measured after annealing in high vacuum, and in forming gas (95%Ar+5%H$_{2}$). It was found that these metho ds of annealing have dramatically different influence on the RS lines. Annealing in vacuum below 500$^{circ}$C leads to significant decrease of both D-line, associated with defects, and 2D-line, associated with the intact lattice structure, which can be explained by annealing-induced enhanced doping. Further annealing in vacuum up to 1000$^{circ}$C leads to significant increase of 2D-line together with continuous decrease of D-line, which gives evidence of partial removal of defects and recovery of the damaged lattice. Annealing in forming gas is less effective in this sense. The blue shift of all lines is observed after annealing. It is shown that below 500$^{circ}$C, the unintentional doping is the main mechanism of shift, while at higher annealing temperatures, the lattice strain dominates due to mismatch of the thermal expansion coefficient of graphene and the SiO$_{2}$ substrate. Inhomogeneous distribution of stress and doping across the samples leads to the correlated variation of the amplitude and the peak position of RS lines.
155 - V. Vyurkov , V. Ryzhii 2008
The effect of Coulomb scattering on graphene conductivity in field effect transistor structures is discussed. Inter-particle scattering (electron-electron, hole-hole, and electron-hole) and scattering on charged defects are taken into account in a wi de range of gate voltages. It is shown that an intrinsic conductivity of graphene (purely ambipolar system where both electron and hole densities exactly coincide) is defined by strong electron-hole scattering. It has a universal value independent of temperature. We give an explicit derivation based on scaling theory. When there is even a small discrepancy in electron and hole densities caused by applied gate voltage the conductivity is determined by both strong electron-hole scattering and weak external scattering: on defects or phonons. We suggest that a density of charged defects (occupancy of defects) depends on Fermi energy to explain a sub-linear dependence of conductivity on a fairly high gate voltage observed in experiments. We also eliminate contradictions between experimental data obtained in deposited and suspended graphene structures regarding graphene conductivity.
We present a microscopic explanation of the controversially discussed transient negative differential transmission observed in degenerate optical pump-probe measurements in graphene. Our approach is based on the density matrix formalism allowing a ti me- and momentum-resolved study of carrier-light, carrier-carrier, and carrier-phonon interaction on microscopic footing. We show that phonon-assisted optical intraband transitions give rise to transient absorption in the optically excited hot carrier system counteracting pure absorption bleaching of interband transitions. While interband transition bleaching is relevant in the first hundreds of fs after the excitation, intraband absorption sets in at later times. In particular, in the low excitation regime, these intraband absorption processes prevail over the absorption bleaching resulting in a zero-crossing of the differential transmission. Our findings are in good agreement with recent experimental pump-probe studies.
The electron gas hosted in a two-dimensional solid-state matrix, such as a quantum well or a two-dimensional van der Waals heterostructure, supports the propagation of plasma waves. Nonlinear interactions between plasma waves, due to charge conservat ion and current convection, generate a constant density gradient which can be detected as a dc potential signal at the boundaries of the system. This phenomenon is at the heart of a plasma-wave photodetection scheme which was first introduced by Dyakonov and Shur for electronic systems with a parabolic dispersion and then extended to the massless Dirac fermions in graphene. In this work, we develop the theory of plasma-wave photodetection in bilayer graphene, which has the peculiarity that the dispersion relation depends locally and dynamically on the intensity of the plasma wave. In our analysis, we show how quantum capacitance effects, arising from the local fluctuations of the electronic dispersion, modify the intensity of the photodetection signal. An external electrical bias, e.g. induced by top and bottom gates, can be used to control the strength of the quantum capacitance corrections, and thus the photoresponse.
We report on the observation of terahertz radiation induced edge photogalvanic currents in graphene, which are nonlinear in intensity. The increase of the radiation intensities up to MW/cm$^2$ results in a complex nonlinear intensity dependence of th e photocurrent. The nonlinearity is controlled by the back gate voltage, temperature and radiation frequency. A microscopic theory of the nonlinear edge photocurrent is developed. Comparison of the experimental data and theory demonstrates that the nonlinearity of the photocurrent is caused by the interplay of two mechanisms, i.e. by direct inter-band optical transitions and Drude-like absorption. Both photocurrents saturate at high intensities, but have different intensity dependencies and saturation intensities. The total photocurrent shows a complex sign-alternating intensity dependence. The functional behaviour of the saturation intensities and amplitudes of both kinds of photogalvanic currents depending on gate voltages, temperature, radiation frequency and polarization is in a good agreement with the developed theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا