Bounds On Entanglement Catalysts


الملخص بالإنكليزية

Given a finite dimensional pure state transformation restricted by entanglement assisted local operations and classical communication (ELOCC), we derive minimum and maximum bounds on the entanglement of an ancillary catalyst that allows that transformation. These bounds are non-trivial even when the Schmidt number of both the original and ancillary states becomes large. We identify a lower bound for the dimension of a catalyst allowing a particular ELOCC transformation. Along with these bounds, we present further constraints on ELOCC transformations by identifying restrictions on the Schmidt coefficients of the target state. In addition, an example showing the existence of qubit ELOCC transformations with multiple ranges of potential ancillary states is provided. This example reveals some additional difficulty in finding strict bounds on ELOCC transformations, even in the qubit case. Finally, a comparison of the bounds in this paper with previously discovered bounds is presented.

تحميل البحث