ﻻ يوجد ملخص باللغة العربية
Given a finite dimensional pure state transformation restricted by entanglement assisted local operations and classical communication (ELOCC), we derive minimum and maximum bounds on the entanglement of an ancillary catalyst that allows that transformation. These bounds are non-trivial even when the Schmidt number of both the original and ancillary states becomes large. We identify a lower bound for the dimension of a catalyst allowing a particular ELOCC transformation. Along with these bounds, we present further constraints on ELOCC transformations by identifying restrictions on the Schmidt coefficients of the target state. In addition, an example showing the existence of qubit ELOCC transformations with multiple ranges of potential ancillary states is provided. This example reveals some additional difficulty in finding strict bounds on ELOCC transformations, even in the qubit case. Finally, a comparison of the bounds in this paper with previously discovered bounds is presented.
We derive the lower and upper bounds on the entanglement of a given multipartite superposition state in terms of the entanglement of the states being superposed. The first entanglement measure we use is the geometric measure, and the second is the q-
We formulate the conditional-variance uncertainty relations for general qubit systems and arbitrary observables via the inferred uncertainty relations. We find that the lower bounds of these conditional-variance uncertainty relations can be written i
Squashed entanglement is a promising entanglement measure that can be generalized to multipartite case, and it has all of the desirable properties for a good entanglement measure. In this paper we present computable lower bounds to evaluate the multi
Quantifying entanglement for multipartite quantum state is a crucial task in many aspects of quantum information theory. Among all the entanglement measures, relative entropy of entanglement $E_{R}$ is an outstanding quantity due to its clear geometr
We propose a protocol for quantum adiabatic optimization, whereby an intermediary Hamiltonian that is diagonal in the computational basis is turned on and off during the interpolation. This `diagonal catalyst serves to bias the energy landscape towar