ﻻ يوجد ملخص باللغة العربية
In the Art Gallery Problem we are given a polygon $Psubset [0,L]^2$ on $n$ vertices and a number $k$. We want to find a guard set $G$ of size $k$, such that each point in $P$ is seen by a guard in $G$. Formally, a guard $g$ sees a point $p in P$ if the line segment $pg$ is fully contained inside the polygon $P$. The history and practical findings indicate that irrational coordinates are a very rare phenomenon. We give a theoretical explanation. Next to worst case analysis, Smoothed Analysis gained popularity to explain the practical performance of algorithms, even if they perform badly in the worst case. The idea is to study the expected performance on small perturbations of the worst input. The performance is measured in terms of the magnitude $delta$ of the perturbation and the input size. We consider four different models of perturbation. We show that the expected number of bits to describe optimal guard positions per guard is logarithmic in the input and the magnitude of the perturbation. This shows from a theoretical perspective that rational guards with small bit-complexity are typical. Note that describing the guard position is the bottleneck to show NP-membership. The significance of our results is that algebraic methods are not needed to solve the Art Gallery Problem in typical instances. This is the first time an $existsmathbb{R}$-complete problem was analyzed by Smoothed Analysis.
In this paper I present several novel, efficient, algorithmic techniques for solving some multidimensional geometric data management and analysis problems. The techniques are based on several data structures from computational geometry (e.g. segment
This is the arXiv index for the electronic proceedings of GD 2019, which contains the peer-reviewed and revised accepted papers with an optional appendix. Proceedings (without appendices) are also to be published by Springer in the Lecture Notes in Computer Science series.
This is the arXiv index for the electronic proceedings of GD 2021, which contains the peer-reviewed and revised accepted papers with an optional appendix. Proceedings (without appendices) are also to be published by Springer in the Lecture Notes in Computer Science series.
A classic theorem by Steinitz states that a graph G is realizable by a convex polyhedron if and only if G is 3-connected planar. Zonohedra are an important subclass of convex polyhedra having the property that the faces of a zonohedron are parallelog
We prove a geometric version of the graph separator theorem for the unit disk intersection graph: for any set of $n$ unit disks in the plane there exists a line $ell$ such that $ell$ intersects at most $O(sqrt{(m+n)log{n}})$ disks and each of the hal