Materiatronics: Modular analysis of arbitrary meta-atoms


الملخص بالإنكليزية

Within the paradigm of metamaterials and metasurfaces, electromagnetic properties of composite materials can be engineered by shaping or modulating their constituents, so-called meta-atoms. Synthesis and analysis of complex-shape meta-atoms with general polarization properties is a challenging task. In this paper, we demonstrate that the most general response can be conceptually decomposed into a set of basic, fundamental polarization phenomena, which enables immediate all-direction characterization of electromagnetic properties of arbitrary linear metamaterials and metasurfaces. The proposed platform of modular characterization (called materiatronics) is tested on several examples of bianisotropic and nonreciprocal meta-atoms. As a demonstration of the potential of the modular analysis, we use it to design a single-layer metasurface of vanishing thickness with unitary circular dichroism. The analysis approach developed in this paper is supported by a ready-to-use computational code and can be further extended to meta-atoms engineered for other types of wave interactions, such as acoustics and mechanics.

تحميل البحث