ترغب بنشر مسار تعليمي؟ اضغط هنا

Multicanonical Monte Carlo Ensemble Growth Algorithm

177   0   0.0 ( 0 )
 نشر من قبل Graziano Vernizzi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a novel Ensemble Monte Carlo Growth method to sample the equilibrium thermodynamic properties of random chains. The method is based on the multicanonical technique of computing the density of states in the energy space. Such a quantity is temperature independent, and therefore microcanonical and canonical thermodynamic quantities, including the free energy, entropy, and thermal averages, can be obtained by re-weighting with a Boltzmann factor. The algorithm we present combines two approaches: the first is the Monte Carlo ensemble growth method, where a population of samples in the state space is considered, as opposed to traditional sampling by long random walks, or iterative single-chain growth. The second is the flat-histogram Monte Carlo, similar to the popular Wang-Landau sampling, or to multicanonical chain-growth sampling. We discuss the performance and relative simplicity of the proposed algorithm, and we apply it to known test cases.



قيم البحث

اقرأ أيضاً

The unconstrained ensemble describes completely open systems whose control parameters are chemical potential, pressure, and temperature. For macroscopic systems with short-range interactions, thermodynamics prevents the simultaneous use of these inte nsive variables as control parameters, because they are not independent and cannot account for the system size. When the range of the interactions is comparable with the size of the system, however, these variables are not truly intensive and may become independent, so equilibrium states defined by the values of these parameters may exist. Here, we derive a Monte Carlo algorithm for the unconstrained ensemble and show that simulations can be performed using chemical potential, pressure, and temperature as control parameters. We illustrate the algorithm by applying it to physical systems where either the system has long-range interactions or is confined by external conditions. The method opens up a new avenue for the simulation of completely open systems exchanging heat, work, and matter with the environment.
We propose a new generalized-ensemble algorithm, which we refer to as the multibaric-multithermal Monte Carlo method. The multibaric-multithermal Monte Carlo simulations perform random walks widely both in volume space and in potential energy space. From only one simulation run, one can calculate isobaric-isothermal-ensemble averages at any pressure and any temperature. We test the effectiveness of this algorithm by applying it to the Lennard-Jones 12-6 potential system with 500 particles. It is found that a single simulation of the new method indeed gives accurate average quantities in isobaric-isothermal ensemble for a wide range of pressure and temperature.
We present a rigorous efficient event-chain Monte Carlo algorithm for long-range interacting particle systems. Using a cell-veto scheme within the factorized Metropolis algorithm, we compute each single-particle move with a fixed number of operations . For slowly decaying potentials such as Coulomb interactions, screening line charges allow us to take into account periodic boundary conditions. We discuss the performance of the cell-veto Monte Carlo algorithm for general inverse-power-law potentials, and illustrate how it provides a new outlook on one of the prominent bottlenecks in large-scale atomistic Monte Carlo simulations.
We propose two efficient algorithms for configurational sampling of systems with rough energy landscape. The first one is a new method for the determination of the multicanonical weight factor. In this method a short replica-exchange simulation is performed and the multicanonical weight factor is obtained by the multiple-histogram reweighting techniques. The second one is a further extension of the first in which a replica-exchange multicanonical simulation is performed with a small number of replicas. These new algorithms are particularly useful for studying the protein folding problem.
We estimated the residual entropy of ice Ih by the recently developed simulation protocol, namely, the combination of Replica-Exchange Wang-Landau algorithm and Multicanonical Replica-Exchange Method. We employed a model with the nearest neighbor int eractions on the three-dimensional hexagonal lattice, which satisfied the ice rules in the ground state. The results showed that our estimate of the residual entropy is found to be within 0.038 % of series expansion estimate by Nagle and within 0.000077 % of PEPS algorithm by Vanderstraeten. In this article, we not only give our latest estimate of the residual entropy of ice Ih but also discuss the importance of the uniformity of a random number generator in MC simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا