ﻻ يوجد ملخص باللغة العربية
We approach the development of models and control strategies of susceptible-infected-susceptible (SIS) epidemic processes from the perspective of marked temporal point processes and stochastic optimal control of stochastic differential equations (SDEs) with jumps. In contrast to previous work, this novel perspective is particularly well-suited to make use of fine-grained data about disease outbreaks and lets us overcome the shortcomings of current control strategies. Our control strategy resorts to treatment intensities to determine who to treat and when to do so to minimize the amount of infected individuals over time. Preliminary experiments with synthetic data show that our control strategy consistently outperforms several alternatives. Looking into the future, we believe our methodology provides a promising step towards the development of practical data-driven control strategies of epidemic processes.
In recent years the research community has accumulated overwhelming evidence for the emergence of complex and heterogeneous connectivity patterns in a wide range of biological and sociotechnical systems. The complex properties of real-world networks
In this paper, we investigate a sparse optimal control of continuous-time stochastic systems. We adopt the dynamic programming approach and analyze the optimal control via the value function. Due to the non-smoothness of the $L^0$ cost functional, in
In this paper, we aim to solve the high dimensional stochastic optimal control problem from the view of the stochastic maximum principle via deep learning. By introducing the extended Hamiltonian system which is essentially an FBSDE with a maximum co
In stochastic dynamic environments, team stochastic games have emerged as a versatile paradigm for studying sequential decision-making problems of fully cooperative multi-agent systems. However, the optimality of the derived policies is usually sensi
We study the problem of optimal inside control of an SPDE (a stochastic evolution equation) driven by a Brownian motion and a Poisson random measure. Our optimal control problem is new in two ways: (i) The controller has access to inside information,