ﻻ يوجد ملخص باللغة العربية
In classical thermodynamics the entropy is an extensive quantity, i.e. the sum of the entropies of two subsystems in equilibrium with each other is equal to the entropy of the full system consisting of the two subsystems. The extensitivity of entropy has been questioned in the context of a theoretical foundation for the so-called $kappa$-distributions, which describe plasma constituents with power-law velocity distributions. We demonstrate here, by employing the recently introduced {it regularized $kappa$-distributions}, that entropy can be defined as an extensive quantity even for such power-law-like distributions that truncate exponentially.
For various plasma applications the so-called (non-relativistic) $kappa$-distribution is widely used to reproduce and interpret the suprathermal particle populations exhibiting a power-law distribution in velocity or energy. Despite its reputation th
Particle velocity distribution functions (VDF) in space plasmas often show non Maxwellian suprathermal tails decreasing as a power law of the velocity. Such distributions are well fitted by the so-called Kappa distribution. The presence of such distr
We study the collision frequencies of particles in the weakly and highly ionized plasmas with the power-law q-distributions in nonextensive statistics. We derive the average collision frequencies of neutral-neutral particle, electron-neutral particle
The collision frequencies of electron-neutral-particle in the weakly ionized complex plasmas with the non-Maxwellian velocity distributions are studied. The average collision frequencies of electron-neutral-particle in the plasmas are derived accurat
The characteristics of wall recycling with different divertor configurations were investigated in this study, focusing on the observations of the spatial distributions of deuterium atomic emissions in the Balmer series (D_{alpha}, D_{beta}, D_{gamma}