ﻻ يوجد ملخص باللغة العربية
We prove that various classical tree forcings -- for instance Sacks forcing, Mathias forcing, Laver forcing, Miller forcing and Silver forcing -- preserve the statement that every real has a sharp and hence analytic determinacy. We then lift this result via methods of inner model theory to obtain level-by-level preservation of projective determinacy (PD). Assuming PD, we further prove that projective generic absoluteness holds and no new equivalence classes classes are added to thin projective transitive relations by these forcings.
We determine the consistency strength of determinacy for projective games of length $omega^2$. Our main theorem is that $boldsymbolPi^1_{n+1}$-determinacy for games of length $omega^2$ implies the existence of a model of set theory with $omega + n$ W
Let $M^sharp_n(mathbb{R})$ denote the minimal active iterable extender model which has $n$ Woodin cardinals and contains all reals, if it exists, in which case we denote by $M_n(mathbb{R})$ the class-sized model obtained by iterating the topmost meas
We consider $omega^n$-automatic structures which are relational structures whose domain and relations are accepted by automata reading ordinal words of length $omega^n$ for some integer $ngeq 1$. We show that all these structures are $omega$-tree-aut
We prove a number of results on the determinacy of $sigma$-projective sets of reals, i.e., those belonging to the smallest pointclass containing the open sets and closed under complements, countable unions, and projections. We first prove the equival
The notion of a textbf{$boldsymbol{mathcal{C}}$-filtered} object, where $mathcal{C}$ is some (typically small) collection of objects in a Grothendieck category, has become ubiquitous since the solution of the Flat Cover Conjecture around the year 200