ترغب بنشر مسار تعليمي؟ اضغط هنا

Preserving levels of projective determinacy by tree forcings

55   0   0.0 ( 0 )
 نشر من قبل Philipp Schlicht
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove that various classical tree forcings -- for instance Sacks forcing, Mathias forcing, Laver forcing, Miller forcing and Silver forcing -- preserve the statement that every real has a sharp and hence analytic determinacy. We then lift this result via methods of inner model theory to obtain level-by-level preservation of projective determinacy (PD). Assuming PD, we further prove that projective generic absoluteness holds and no new equivalence classes classes are added to thin projective transitive relations by these forcings.



قيم البحث

اقرأ أيضاً

We determine the consistency strength of determinacy for projective games of length $omega^2$. Our main theorem is that $boldsymbolPi^1_{n+1}$-determinacy for games of length $omega^2$ implies the existence of a model of set theory with $omega + n$ W oodin cardinals. In a first step, we show that this hypothesis implies that there is a countable set of reals $A$ such that $M_n(A)$, the canonical inner model for $n$ Woodin cardinals constructed over $A$, satisfies $A = mathbb{R}$ and the Axiom of Determinacy. Then we argue how to obtain a model with $omega + n$ Woodin cardinal from this. We also show how the proof can be adapted to investigate the consistency strength of determinacy for games of length $omega^2$ with payoff in $Game^mathbb{R} boldsymbolPi^1_1$ or with $sigma$-projective payoff.
Let $M^sharp_n(mathbb{R})$ denote the minimal active iterable extender model which has $n$ Woodin cardinals and contains all reals, if it exists, in which case we denote by $M_n(mathbb{R})$ the class-sized model obtained by iterating the topmost meas ure of $M_n(mathbb{R})$ class-many times. We characterize the sets of reals which are $Sigma_1$-definable from $mathbb{R}$ over $M_n(mathbb{R})$, under the assumption that projective games on reals are determined: (1) for even $n$, $Sigma_1^{M_n(mathbb{R})} = Game^mathbb{R}Pi^1_{n+1}$; (2) for odd $n$, $Sigma_1^{M_n(mathbb{R})} = Game^mathbb{R}Sigma^1_{n+1}$. This generalizes a theorem of Martin and Steel for $L(mathbb{R})$, i.e., the case $n=0$. As consequences of the proof, we see that determinacy of all projective games with moves in $mathbb{R}$ is equivalent to the statement that $M^sharp_n(mathbb{R})$ exists for all $ninmathbb{N}$, and that determinacy of all projective games of length $omega^2$ with moves in $mathbb{N}$ is equivalent to the statement that $M^sharp_n(mathbb{R})$ exists and satisfies $mathsf{AD}$ for all $ninmathbb{N}$.
257 - Olivier Finkel 2011
We consider $omega^n$-automatic structures which are relational structures whose domain and relations are accepted by automata reading ordinal words of length $omega^n$ for some integer $ngeq 1$. We show that all these structures are $omega$-tree-aut omatic structures presentable by Muller or Rabin tree automata. We prove that the isomorphism relation for $omega^2$-automatic (resp. $omega^n$-automatic for $n>2$) boolean algebras (respectively, partial orders, rings, commutative rings, non commutative rings, non commutative groups) is not determined by the axiomatic system ZFC. We infer from the proof of the above result that the isomorphism problem for $omega^n$-automatic boolean algebras, $n > 1$, (respectively, rings, commutative rings, non commutative rings, non commutative groups) is neither a $Sigma_2^1$-set nor a $Pi_2^1$-set. We obtain that there exist infinitely many $omega^n$-automatic, hence also $omega$-tree-automatic, atomless boolean algebras $B_n$, $ngeq 1$, which are pairwise isomorphic under the continuum hypothesis CH and pairwise non isomorphic under an alternate axiom AT, strengthening a result of [FT10].
We prove a number of results on the determinacy of $sigma$-projective sets of reals, i.e., those belonging to the smallest pointclass containing the open sets and closed under complements, countable unions, and projections. We first prove the equival ence between $sigma$-projective determinacy and the determinacy of certain classes of games of variable length ${<}omega^2$ (Theorem 2.4). We then give an elementary proof of the determinacy of $sigma$-projective sets from optimal large-cardinal hypotheses (Theorem 4.4). Finally, we show how to generalize the proof to obtain proofs of the determinacy of $sigma$-projective games of a given countable length and of games with payoff in the smallest $sigma$-algebra containing the projective sets, from corresponding assumptions (Theorems 5.1 and 5.4).
98 - Sean D. Cox 2020
The notion of a textbf{$boldsymbol{mathcal{C}}$-filtered} object, where $mathcal{C}$ is some (typically small) collection of objects in a Grothendieck category, has become ubiquitous since the solution of the Flat Cover Conjecture around the year 200 0. We introduce the textbf{$boldsymbol{mathcal{C}}$-Filtration Game of length $boldsymbol{omega_1}$} on a module, paying particular attention to the case where $mathcal{C}$ is the collection of all countably presented, projective modules. We prove that Martins Maximum implies the determinacy of many $mathcal{C}$-Filtration Games of length $omega_1$, which in turn imply the determinacy of certain Ehrenfeucht-Fraiss{e} games of length $omega_1$; this allows a significant strengthening of a theorem of Mekler-Shelah-Vaananen cite{MR1191613}. Also, Martins Maximum implies that if $R$ is a countable hereditary ring, the class of textbf{$boldsymbol{sigma}$-closed potentially projective modules}---i.e., those modules that are projective in some $sigma$-closed forcing extension of the universe---is closed under $<aleph_2$-directed limits. We also give an example of a (ZFC-definable) class of abelian groups that, under the ordinary subgroup relation, constitutes an Abstract Elementary Class (AEC) with Lowenheim-Skolem number $aleph_1$ in some models in set theory, but fails to be an AEC in other models of set theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا