We analyze general uncertainty relations and we show that there can exist such pairs of non--commuting observables $A$ and $B$ and such vectors that the lower bound for the product of standard deviations $Delta A$ and $Delta B$ calculated for these vectors is zero: $Delta A,cdot,Delta B geq 0$. We show also that for some pairs of non--commuting observables the sets of vectors for which $Delta A,cdot,Delta B geq 0$ can be complete (total). The Heisenberg, $Delta t ,cdot, Delta E geq hbar/2$, and Mandelstam--Tamm (MT), $ tau_{A},cdot ,Delta E geq hbar/2$, time--energy uncertainty relations ($tau_{A}$ is the characteristic time for the observable $A$) are analyzed too. We show that the interpretation $tau_{A} = infty$ for eigenvectors of a Hamiltonian $H$ does not follow from the rigorous analysis of MT relation. We show also that contrary to the position--momentum uncertainty relation, the validity of the MT relation is limited: It does not hold on complete sets of eigenvectors of $A$ and $H$.