ﻻ يوجد ملخص باللغة العربية
The exquisite photometry of Kepler has revealed reflected light from exoplanets, tidal distortion of host stars and Doppler beaming of a stars light due to its motion (Borucki 2016; Demory et al. 2012; Welsh et al. 2010; Bloemen et al. 2012). Esteves et al. (2013, 2015) and Shporer et al. (2014) reported additional odd harmonics in the light curves of two hot Jupiters: HAT-P-7b and Kepler-13Ab. They measured non-zero power at three times the orbital frequency that persisted while the planet was eclipsed and hence must originate in the star (Esteves et al. 2015). Penoyre & Sandford (2018) showed that orbital eccentricity could result in time-dependent tidal deformation of the star that manifests itself at three times the orbital frequency and suggested this could be the origin of the measured odd modes. In this Research Note, we show that the small orbital eccentricities of HAT-P-7b and Kepler-13Ab cannot generate the odd harmonics observed in these systems. Esteves et al. (2015) hypothesized that the odd modes could be due to tidal distortion of the star if its spin is misaligned with the systems orbital motion, as is the case in both of these systems (Benomar et al. 2014; Herman et al. 2018), but this mechanism has yet to be verified theoretically or numerically.
We report that HAT-P-7 has a common proper motion stellar companion. The companion is located at $sim3.9$ arcsec to the east and estimated as an M5.5V dwarf based on its colors. We also confirm the presence of the third companion, which was first rep
We present observations of the Rossiter-McLaughlin effect for two exoplanetary systems, revealing the orientations of their orbits relative to the rotation axes of their parent stars. HAT-P-4b is prograde, with a sky-projected spin-orbit angle of lam
Photometry of short-period planetary systems allows astronomers to monitor exoplanets, their host stars, and their mutual interactions. In addition to the transits of a planet in front of its star and the eclipses of the planet by its star, researche
We report the discovery of four relatively massive (2-7MJ) transiting extrasolar planets. HAT-P-20b orbits a V=11.339 K3 dwarf star with a period P=2.875317+/-0.000004d. The host star has a mass of 0.760+/-0.03 Msun, radius of 0.690+/-0.02 Rsun, Teff
First identified from the HATNet wide-field photometric survey, these candidate transiting planets were then followed-up with a variety of photometric observations. Determining the planetary nature of the objects and characterizing the parameters of