ﻻ يوجد ملخص باللغة العربية
In this paper, we study the robustness of graph convolutional networks (GCNs). Previous work have shown that GCNs are vulnerable to adversarial perturbation on adjacency or feature matrices of existing nodes; however, such attacks are usually unrealistic in real applications. For instance, in social network applications, the attacker will need to hack into either the client or server to change existing links or features. In this paper, we propose a new type of fake node attacks to attack GCNs by adding malicious fake nodes. This is much more realistic than previous attacks; in social network applications, the attacker only needs to register a set of fake accounts and link to existing ones. To conduct fake node attacks, a greedy algorithm is proposed to generate edges of malicious nodes and their corresponding features aiming to minimize the classification accuracy on the target nodes. In addition, we introduce a discriminator to classify malicious nodes from real nodes, and propose a Greedy-GAN attack to simultaneously update the discriminator and the attacker, to make malicious nodes indistinguishable from the real ones. Our non-targeted attack decreases the accuracy of GCN down to 0.03, and our targeted attack reaches a success rate of 78% on a group of 100 nodes, and 90% on average for attacking a single target node.
Graph neural networks (GNNs) which apply the deep neural networks to graph data have achieved significant performance for the task of semi-supervised node classification. However, only few work has addressed the adversarial robustness of GNNs. In thi
Deep learning on graph structures has shown exciting results in various applications. However, few attentions have been paid to the robustness of such models, in contrast to numerous research work for image or text adversarial attack and defense. In
Graph-structured data exist in numerous applications in real life. As a state-of-the-art graph neural network, the graph convolutional network (GCN) plays an important role in processing graph-structured data. However, a recent study reported that GC
Graphs have been widely adopted to denote structural connections between entities. The relations are in many cases heterogeneous, but entangled together and denoted merely as a single edge between a pair of nodes. For example, in a social network gra
With the success of the graph embedding model in both academic and industry areas, the robustness of graph embedding against adversarial attack inevitably becomes a crucial problem in graph learning. Existing works usually perform the attack in a whi