ﻻ يوجد ملخص باللغة العربية
Van der Waals heterostructures have been lately intensively studied because they offer a large variety of properties that can be controlled by selecting 2D materials and their sequence in the stack. The exact arrangement of the layers as well as the exact arrangement of the atoms within the layers, both are important for the properties of the resulting device. Recently it has been demonstrated that convergent beam electron diffraction (CBED) allows quantitative three-dimensional mapping of atomic positions in three-dimensional materials from a single CBED pattern. In this study we investigate CBED in more detail by simulating and performing various CBED regimes, with convergent and divergent wavefronts, on a somewhat simplified system: a 2D monolayer crystal. In CBED, each CBED spot is in fact an in-line hologram of the sample, where in-line holography is known to exhibit high intensity contrast in detection of weak phase objects that are not detectable in conventional in-focus imaging mode. Adsorbates exhibit strong intensity contrast in zero and higher order CBED spots, whereas lattice deformation such as strain or rippling cause noticeable intensity contrast only in the first and higher order CBED spots. The individual CBED spots can be reconstructed as typical in-line holograms, and the resolution of 2.13 A can be in principle achieved in the reconstructions. We provide simulated and experimental examples of CBED of a 2D monolayer crystal. The simulations show that individual CBED spots can be treated as in-line holograms and sample distributions such as adsorbates, can be reconstructed. Individual atoms can be reconstructed from a single CBED pattern provided the later exhibits high-order CBED spots. Examples of reconstructions obtained from experimental CBED patterns, at a resolution of 2.7 A, are shown.
The textbook thermophoretic force which acts on a body in a fluid is proportional to the local temperature gradient. The same is expected to hold for the macroscopic drift behavior of a diffusive cluster or molecule physisorbed on a solid surface. Th
Bulk amorphous materials have been studied extensively and are widely used, yet their atomic arrangement remains an open issue. Although they are generally believed to be Zachariasen continuous random networks, recent experimental evidence favours th
Van der Waals heterostructures, which explore the synergetic properties of two-dimensional (2D) materials when assembled into three-dimensional stacks, have already brought to life a number of exciting new phenomena and novel electronic devices. Stil
The convergent beam electron diffraction (CBED) patterns of twisted bilayer samples exhibit interference patterns in their CBED spots. Such interference patterns can be treated as off-axis holograms and the phase of the scattered waves, meaning the i
With considering the great success of scanning tunnelling microscopy (STM) studies of graphene in the past few years, it is quite surprising to notice that there is still a fundamental contradiction about the reported tunnelling spectra of quasi-free